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S

The recent paper by Peng & Yao (2003) gave an interesting extension of least absolute
deviation estimation to generalised autoregressive conditional heteroscedasticity, ,
time series models. The asymptotic distributions of absolute residual autocorrelations and
squared residual autocorrelations from the  model estimated by the least absolute
deviation method are derived in this paper. These results lead to two useful diagnostic
tools which can be used to check whether or not a  model fitted by using the least
absolute deviation method is adequate. Some simulation experiments give further support
to the asymptotic theory and a real data example is also reported.
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1. I

With the practical motivation of modelling conditional heteroscedasticity in economic
and financial time series, Engle (1982) and Bollerslev (1986) proposed respectively the
autoregressive conditional heteroscedasticity, , and the generalised autoregressive
conditional heteroscedasticity, , models. These two models have achieved huge
success in real applications where an explicit conditional Gaussian likelihood function
is often assumed to facilitate estimation of parameters in the model. Recently, however,
more and more empirical evidence has suggested that financial time series can be
very heavy-tailed (Mittnik et al., 1998; Rachev & Mittnik, 2000, Ch. 1). For this case
traditional maximum likelihood estimation is not available, but the Gaussian likelihood
function still can be used to estimate the parameters, corresponding to so-called quasi-
maximum-likelihood estimation (Bollerslev & Wooldridge, 1992). Weiss (1986) obtained
the asymptotic normality of quasi-maximum-likelihood estimators for the  model.
Hall & Yao (2003) established the asymptotic normality of the quasi-maximum-likelihood
estimators for the general  ( p, q ) models under certain conditions. They also
discovered that the asymptotic distribution may not be normal, with an infinite fourth
moment. Peng & Yao (2003) discussed three different local least absolute deviation
estimators for the general  ( p, q ) model and obtained their asymptotic distribution,
which has a Gaussian form. Their result can be applied to the situation where the time
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series has infinite fourth moment, since conditions are imposed on the probability density
function of the errors but not on the moments. Model estimation is only one of the stages
in the Box–Jenkins approach to time series modelling. The last stage, checking whether
or not a fitted  model based on least absolute deviation estimation is adequate,
has not been discussed in the literature.
Note that residuals coming from a correct time series model should be very close

to white noise. Based on the asymptotic distribution of the residual autocorrelations,
if the model is correct, we can derive tests for individual residual autocorrelations and
also an overall portmanteau statistic for model diagnostic checking. For the asymptotic
distribution of the residual autocorrelations for general nonlinear time series models, see
Li (1992). This paper is motivated by Li & Mak (1994), who used the squared residual
autocorrelations to devise some useful diagnostic tools for time series models with
changing conditional variance. However the existence of squared residual autocorrelations
needs a finite fourth moment, which excludes many heavy-tailed distributions. In this
paper the asymptotic distribution of the autocorrelations of absolute residuals from a
 model fitted using the least absolute deviation method is derived. The result
depends only on the existence of a second-order moment and is therefore robust under
heavy-tailed distributions. This result allows us to construct a portmanteau statistic
that is useful in checking model adequacy. In the finance literature absolute return auto-
correlations, which are similar to absolute residual autocorrelations, have been discussed
for example by Taylor (1986, pp. 52–6) and Granger et al. (1999). As a by-product a
portmanteau test based on squared residual autocorrelations from the least absolute
deviation fit is also derived in this paper.

2. N  

Let {X
t
} be a stationary and ergodic time series generated by the following  ( p, q )

model:

X
t
=g
t
s
t
, s2
t
=c+ ∑

p

i=1
a
i
X2
t−i
+ ∑
q

j=1
b
j
s2
t−j
, (2·1)

where c>0, a
i
�0 and b

j
�0 are unknown parameters, {g

t
} is a sequence of independent

and identically distributed random variables with mean 0 and variance 1, and g
t
is

independent of {X
t−k
, k�1} for all t. The necessary and sufficient condition for model (2·1)

to exist as a unique strictly stationary process {X
t
, t=0,±1,±2, . . .} with EX2

t
<2

is that

∑
p

i=1
a
i
+ ∑
q

j=1
b
j
<1. (2·2)

It is easy to find a positive value d such that the median of e2
t
is equal to 1, where

e
t
=g
t
/d. Then we can rewrite model (2·1) in the form

X
t
=e
t
h1/2
t
, h
t
=a
0
+ ∑
p

i=1
a
i
X2
t−i
+ ∑
q

j=1
b
j
h
t−j
, (2·3)

where h1/2
t
=ds

t
, a0=d2c, ai=d2ai and bj=bj . Let h= (a0 , a1 , . . . , ap , b1 , . . . , bq )T, which

is the parameter vector for model (2·3).
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For any fixed t, h
t
(h) and e

t
(h)=X

t
/h1/2
t
(h) are functions of h. Furthermore we define

Z
t
(h)= log e2

t
(h) and sgn{Z

t
(h)}, where sgn(x) denotes the sign of x. Let

U
t
(h)=

∂
∂h
log h

t
(h)=

1

h
t
(h)

∂h
t
(h)

∂h
,

which is also a function of h. Let S=E0{Ut (h0 )Ut (h0 )T}, a (1+p+q )× (1+p+q ) matrix,
where h0 is the true parameter value and E0 denotes expectation under h=h0.
For model (2·3), under (2·2) and other regularity conditions, Peng & Yao (2003) sug-

gested a local least absolute deviation estimator h@LAD for a given time series {Xn−k , k�0},
defined by

h@LAD= arg min
hµN

∑
n

t=1
|log(X2

t
)− log{h

t
(h)}|, (2·4)

whereN denotes a sufficiently small but fixed neighbourhood of the true parameter value.
In practice, we can suppose that X

i
=0, for i∏−N, where N is a large positive number,

and Peng & Yao (2003) proved that such an estimation is as good as the h@LAD obtained
from (2·4), when N is large enough.
Based on the proof of Theorem 1 in Peng & Yao (2003), it can be proved that

√n(h@LAD−h0 )=
S−1

2 f (0)

1

√n
∑
n

t=1
U
t
(h0 ) sgn{Z

t
(h0 )}+o

p
(1), (2·5)

where f ( . ) is the density function of log e2
t
. Hence, the first item on the right-hand side

of (2·5) can be used to approximate √n(h@LAD−h0 ) in the derivation that follows.
Let h@

t
be the corresponding value when the parameter vector h in h

t
is replaced by h@LAD ,

and e@
t
=X
t
/h@1/2
t
is the corresponding standardised residual. Similarly to Li & Mak (1994),

the lag-k standardised absolute residual autocorrelation can be defined as

rA k=
Wn
t=k+1

(|X
t
|/h@1/2
t
−e:*)(|Xt−k |/h

@1/2
t−k
−e:*)

Wn
t=1
(|X
t
|/h@1/2
t
−e:*)2

(k=1, 2, . . .), (2·6)

where e:*=n−1 W |Xt |/h
@1/2
t
and n is the sample size. Generally it is more difficult to discuss

the asymptotic behaviour of rA k . However, if the model is correct, it can be shown that e:*
will converge to m*=E|e

t
| in probability. Hence we consider r@

k
instead of rA k , where

r@
k
=
Wn
t=k+1

(|X
t
|/h@1/2
t
−m*)(|X

t−k
|/h@1/2
t−k
−m*)

Wn
t=1
(|X
t
|/h@1/2
t
−m*)2

(k=1, 2, . . .), (2·7)

and e:* in (2·6) is replaced by m*.
For the lag-k standardised squared residual autocorrelation, we use the same definition

as Li & Mak (1994), namely

rAk=
Wn
t=k+1

(X2
t
/h@
t
−e: ) (X2t−k/h

@
t−k
−e: )

Wn
t=1
(X2
t
/h@
t
−e: )2

(k=1, 2, . . .), (2·8)

where e:=n−1 W X2t /h
@
t
. Note that e: converges to m=Ee2t in probability, if the model is

correct. Hence, for the same reason as that for the absolute residuals, we consider r@
k

instead, where

r@
k
=
Wn
t=k+1

(X2
t
/h@
t
−m) (X2

t−k
/h@
t−k
−m)

Wn
t=1
(X2
t
/h@
t
−m)2

(k=1, 2, . . .) (2·9)

and e: in (2·8) is replaced by m.
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In the following two sections, we will consider the asymptotic distributions of
(r@1 , . . . , r@M )T and (r@1 , . . . , r@M )T, where M is a positive integer.

3. A      

In this section we derive the asymptotic distribution of the vector (r@1 , . . . , r@M )T, which
leads to a useful diagnostic tool for checking the adequacy of a  model fitted by
the least absolute deviation approach. For simplicity, from now on, we denote the local
least absolute deviation estimator h@LAD by h

@ and the true parameter value h0 by h.
We note that, if the model is correct, the item n−1 W (|X

t
|/h@1/2
t
−m*)2 in (2·7) converges

to the constant (s*)2=var(|e
t
|) in probability. Hence, for r@

k
, we need only consider the

asymptotic distribution of

CC *
k
=
1

n
∑
n

t=k+1
A |Xt |h@1/2
t
−m*BA |Xt−k |h@1/2

t−k
−m*B .

Let CC *= (CC *
1
, CC *
2
, . . . , CC *

M
)T and C*= (C*

1
, C*
2
, . . . , C*

M
)T,where C*

k
is the corresponding

value when h@ in h
t
is replaced by h. Similarly define r@=(r@1 , . . . , r@M )T and r=(r1 , . . . , rM )T.

By Taylor’s expansion, we have

CC *jC*+
∂C*
∂h
(h@−h), (3·1)

where ∂C*/∂h= (∂C*
1
/∂h, ∂C*

2
/∂h, . . . , ∂C*

M
/∂h)T and, for k=1, . . . , M,

∂C*
k
∂h
=
∂
∂hq1n ∑

t
A |Xt |h1/2
t
−m*BA |Xt−k |h1/2

t−k
−m*Br

=−
1

2n
∑
t

|X
t
|

h3/2
t

∂h
t
∂h A |Xt−k |h1/2

t−k
−m*B− 12n ∑

t
A |Xt |h1/2
t
−m*B |Xt−k |h3/2

t−k

∂h
t−k
∂h
.

By the ergodic theorem the second item on the right-hand side converges to zero.
Hence, for large n, ∂C*

k
/∂hj−W (|X

t
|/h3/2
t
) (∂h
t
/∂h) (|X

t−k
|/h1/2
t−k
−m*)/(2n). If we take the

conditional expectation of each term under the summation sign and apply the ergodic
theorem, ∂C*

k
/∂h can be consistently estimated by

−YB *
k
=−

1

2n
∑
t

m*

h
t

∂h
t
∂h A |Xt−k |h1/2

t−k
−m*B .

Define the resultingM× (1+p+q) matrix by−YB * when ∂C*
k
/∂h in ∂C*/∂h are replaced

by −YB *
k
(k=1, . . . , M). Let H be the probability limit of YB *. Then CC * in (3·1) can be

approximated by

CC *jC*−H(h@−h). (3·2)

For the vector C* on the right-hand side of (3·2), applying Theorem 2.8.1 in Lehmann
(1998) directly, we can obtain that

√nC*�N{0, (s*)4I
M
}, (3·3)

in distribution, where I
M
is the M×M identity matrix.
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For the asymptotic covariance between √n(h@−h) and √nC*, replacing √n(h@−h) with
(2·5) first, we can obtain that

cov{√n(h@−h), √nC*
k
}jEC S−12 f (0)

1

√n
∑
t
U
t
(h) sgn{Z

t
(h)}√nC*

k D
=EC S−12 f (0)

1

√n
∑
t
U
t
(h) sgn{Z

t
(h)}

×√n
1

n
∑
s
A |Xs |√h

s
−m*BA |Xs−k |√h

s−k
−m*BD

=
S−1

2n f (0)
∑
t
∑
s
ECUt (h) sgn{Zt (h)}A |Xs |√h

s
−m*BA |Xs−k |√h

s−k
−m*BD

=
S−1

2n f (0)
∑
t
ECUt (h) sgn{Zt (h)}A |Xt |√h

t
−m*BA |Xt−k |√h

t−k
−m*BD

=
S−1

2 f (0)
ECA |Xt |√h

t
−m*B sgn{Zt (h)}DEqUt (h)A |Xt−k |√h

t−k
−m*Br

=
S−1

2 f (0)
d*
2

m*
Eqm* ∂ht2h

t
∂h A |Xt−k |√h

t−k
−m*Br

=
S−1

f (0)

d*

m*
H
(k)
, (3·4)

where m*=E|e
t
|, d*=E{|e

t
|(I
{|e
t
|>1}
−I
{|e
t
|<1}
)} and H

(k)
is the kth row of the matrix

H= (H(1) , . . . , H(M) )T.
The asymptotic normality of √n(h@−h) has been shown in Peng & Yao (2003). Hence,
by applying the Mann–Wald device, the martingale central limit theorem, (2·5) and (3·2)
to (3·4), we know that √nCC * is asymptotically normally distributed with mean 0 and
covariance matrix (s*)4V1 , where

V
1
=I
M
+
m*−8d* f (0)
4m* f 2 (0)(s*)4

HS−1HT,

(s*)2=var(|e
t
|). Furthermore, √nr@ is also asymptotically normally distributed with

mean 0 and covariance matrix V1 .
From the above, we can obtain the correct asymptotic standard errors for the absolute

residual autocorrelations. In particular, when g
t
follows the standard normal distribution,

the quantity {m*−8d* f (0)}/{4m* f 2 (0)} is equal to −0·09. For the t distribution this
quantity can be shown to be negative; for example, it is −0·39 for the t3 distribution.
Hence we know that the asymptotic standard errors are generally less than 1/√n, which
is usually regarded as a crude standard error in diagnostic checking. Our result implies
that the test, using simply 1·96/√n, could be too conservative. For the extreme situation
in which the conditional variance s2

t
in (2·1) is constant, that is H=0, the standard errors

of r@
k
, for k=1, . . . , M, are equal to 1/√n. These results are typical and consistent with

the classical result; see Box & Pierce (1970) and Li & Mak (1994).
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In general, V1 is not an idempotent matrix, and then nr@Tr@ does not follow a x2
distribution asymptotically. However, the statistic

Q(M)=nr@TV−1
1
r@

will be asymptotically distributed as x2
M
if the model is correct. This quantity should

be useful as a portmanteau statistic for checking the adequacy of  models that
are estimated with the least absolute deviation approach. In practice, we can obtain the
exact values of f (0), m* and d* if the distribution of g

t
is known. Otherwise we can use the

value of n−1 W |e@
t
|I
{|e@
t
|>1}
−n−1 W |e@

t
|I
{|e@
t
|<1}
to replace d* and e:=n−1 W |e@t | to replace m*.

For f (0), we can use some method of density estimation, such as the kernel method or
smoothing splines, to obtain f@ (x) first and then use f@ (0) to replace f (0), since {log (e@2

t
)}

is very close to the independent identically distributed sequence when the model is correct.
The entries of H and S in the definition of matrix V1 can be replaced by the corresponding
sample averages as in Li & Mak (1994). The constant (s*)4 can be replaced by (CC *

0
)2.

Tse & Zuo (1997) considered the optimal choice of M for portmanteau tests proposed in
Li & Mak (1994).

4. A      

If the model is correct, under the condition Eg4
t
<+2, the term n−1 W (X2

t
/h@
t
−m)2

in (2·9) converges to s2=var(e2
t
) in probability. It is therefore enough to consider just the

asymptotic distribution of

CC
k
=
1

n
∑
n

t=k+1
AX2th@
t
−mBAX2t−kh@

t−k
−mB .

Let CC = (CC1 , CC2 , . . . , CCM )T, C= (C1 , C2 , . . . , CM )T, RC = (r@1 , r@2 , . . . , r@M )T and R=
(r1 , r2 , . . . , rM )T, where Ck and rk are the corresponding values when the parameter
estimator h@ in h

t
is replaced by h. By Taylor’s expansion, we have

CCjC+
∂C
∂h
(h@−h), (4·1)

where ∂C/∂h= (∂C1/∂h, ∂C2/∂h, . . . , ∂CM/∂h)T and, for k=1, . . . , M,

∂C
k
∂h
=−

1

n
∑
t

X2
t
h2
t

∂h
t
∂h AX2t−kh

t−k
−mB− 1n ∑

t
AX2th
t
−mBX2t−kh2

t−k

∂h
t−k
∂h
.

As in § 3, for large n, we replace ∂C
k
/∂h by

−YB
k
=−

1

n
∑
t

m

h
t

∂h
t
∂h AX2t−kh

t−k
−mB (k=1, . . . , M)

and replace ∂C/∂h by the matrix−YB , where YB= (YB1 , YB2 , . . . , YBM )T. Let Y be the probability
limit of YB . Then CC in (4·1) can also be approximated by

CCjC−Y (h@−h). (4·2)

For the vector C on the right-hand side of (4·2), under the condition Eg4
t
<+2, we

also have that

√nC�N(0, s4I ) (4·3)

in distribution.
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For the asymptotic covariance between√n(h@−h) and√nC, we have, by using (2·5), that

cov{√n(h@−h), √nC
k
}jEC S−12 f (0)

1

√n
∑
t
U
t
(h) sgn{Z

t
(h)}√nC

kD
=EC S−12 f (0)

1

√n
∑
t
U
t
(h) sgn{Z

t
(h)}

×√n
1

n
∑
s
AX2sh
s
−mBAX2s−kh

s−k
−mBD

=
S−1

2 f (0)
d
1

m
Eqmh

t

∂h
t
∂h AX2t−kh

t−k
−mBr

=
S−1

2 f (0)

d

m
Y
(k)
, (4·4)

where m=Ee2
t
, d=E{e2

t
(I
{|e
t
|>1}
− I
{|e
t
|<1}
)} and Y

(k)
is the kth row of the matrix

Y= (Y(1) , . . . , Y(M) )T.
By the Mann–Wald device, the martingale central limit theorem and Eg4

t
<+2,

we know, from (4·2) to (4·4), that √nCC is asymptotically normal with mean 0 and
covariance matrix s4V2 , and that √nRC is also asymptotically normal with mean 0
and covariance matrix V2 , where

V
2
=I
M
+
m−4d f (0)
4m f 2 (0)s4

Y S−1Y T.

Remark 1. As a result of the condition Eg4
t
<+2, we have no asymptotic result for

the squared residuals when g
t
~t3 or gt~t4 .

Remark 2. The quantity {m−4d f (0)}/{4m f 2 (0)} is positive when g
t
follows the standard

normal or t distribution; for example it is 1·44 for the normal distribution and 1·58 for
the t5 distribution. Then we know that the asymptotic standard errors are generally larger
than 1/√n and our result implies that the test, using simply 1·96/√n, is too sensitive. This
result is somewhat different from the absolute-value version in § 3 and the classical
situation where the use of 1·96/√n leads to under-rejection at the 5% significance level
(Box & Pierce, 1970).

Remark 3. Again we use the corresponding sample averages to replace the entries of Y
and S in the covariance matrix V2 . In general the constant s4 can be replaced by C

C 2
0
. Even

under heavy-tailed distributions, we can still evaluate the covariance matrix V2 this way.
For other nuisance parameters, m, d and f (0), if the distribution of g

t
is unknown, we can

also use e:=n−1 W e@2t to replace m, n−1 W e@2t I{|e
t
|>1}
−n−1 W e@2

t
I
{|e
t
|<1}
to replace d and f@ (0)

to replace f (0), where f@ ( . ) is the density function estimated from the series {log(e@2
t
)}.

Similarly to § 3, V1 is generally not an idempotent matrix, so that nRC TRC does not follow
a x2 distribution asymptotically. However, the portmanteau statistic

Q2 (M)=nRC TV−1
2
RC

will be asymptotically x2
M
if the model is correct. This quantity can also be used to check

the adequacy of  models fitted by the least absolute deviation method.
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5. E   

For this section, we performed two simulation experiments to demonstrate the usefulness
of the asymptotic results obtained in §§ 3 and 4. In the first experiment, we considered the
 (1, 1) time series

X
t
=g
t
s
t
, s2
t
=0·4+0·4X2

t−1
+0·1s2

t−1
,

where {g
t
} was an independent identically distributed sequence with mean 0, generated

from the N (0, 1), t3 and t5 distributions in three subexperiments. The gt’s were then scaled
to have variance 1. For these three cases, we considered two different sample sizes,
n=200 and n=500, and there were 500 independent replications for each model and
sample size combination. The iteration algorithm of Nelder & Mead (1965), which is
available in the International Mathematical and Statistical Library subroutine ,
was used to search for the estimates which minimise (2·4). The subroutine  was
also used in the second experiment and a real data example below. The asymptotic
standard errors A

i
(i=1, . . . , 6) of the absolute residual autocorrelations, r@= (r@1 , . . . , r@6 )T,

and the squared residual autocorrelations, r@= (r@1 , . . . , r@6 )T, were computed according to
the results in §§ 3 and 4. The empirical standard errors S

i
of rA i and rAi (i=1, . . . , 6)

were also obtained and were taken to be the ‘true’ standard errors. Table 1 presents
the empirical standard errors and the averages of the asymptotic standard errors for
lags 1, 2, 3 and 6. It can be seen that the asymptotic results for both absolute and squared
residual autocorrelations match the ‘true’ values satisfactorily for n as small as 200 and
quite well for n=500.

Table 1: First simulation study. T he empirical, S
i
, and the large-sample, A

i
, standard errors of

absolute residual autocorrelations and squared residual autocorrelations for the  (1, 1)
model, for lags 1, 2, 3 and 6

lag i
Absolute residuals Squared residuals

Distribution n 1 2 3 6 1 2 3 6

t3 200 A
i

0·0679 0·0688 0·0701 0·0707
S
i

0·0640 0·0670 0·0665 0·0680

500 A
i

0·0432 0·0437 0·0444 0·0447
S
i

0·0433 0·0436 0·0414 0·0438

t5 200 A
i

0·0683 0·0692 0·0702 0·0706 0·0820 0·0803 0·0744 0·0715
S
i

0·0712 0·0691 0·0724 0·0683 0·0752 0·0747 0·0701 0·0682

500 A
i

0·0433 0·0438 0·0444 0·0447 0·0494 0·0488 0·0463 0·0449
S
i

0·0431 0·0446 0·0454 0·0443 0·0419 0·0429 0·0412 0·0411

N(0, 1) 200 A
i

0·0693 0·0699 0·0704 0·0707 0·0911 0·0858 0·0767 0·0719
S
i

0·0688 0·0669 0·0700 0·0702 0·0777 0·0721 0·0726 0·0718

500 A
i

0·0439 0·0442 0·0446 0·0447 0·0561 0·0531 0·0477 0·0449
S
i

0·0423 0·0433 0·0457 0·0422 0·0468 0·0443 0·0437 0·0422

In the second experiment, we considered the empirical size and power of the statistics
Q(M) and Q2 (M). Two generating processes were involved: one is an  process,

X
t
=g
t
s
t
, s2
t
=c+a

1
X2
t−1
+a
2
X2
t−2
+a
3
X2
t−3
, (5·1)

and the other is a  process,

X
t
=g
t
s
t
, s2
t
=c+a

1
X2
t−1
+a
2
X2
t−2
+b
1
s2
t−1
, (5·2)
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where the standard normal distribution and the t3 and t5 distributions were again
considered for the innovation sequence {g

t
}. Again, the g

t
’s were scaled to have

variance 1. We used two different sets of parameters, h= (c, a1 , a2 , a3 )= (0·4, 0·2, 0·4, 0)
or h= (0·4, 0·2, 0·4, 0·2) for the  process and h= (c, a1 , a2 , b1 )= (0·4, 0·4, 0, 0·1) or
h= (0·4, 0·4, 0·2, 0·1) for the  process. For each set of parameters, three different
sample sizes, n=200, n=500 and n=1000, were considered. There were 1000 replications
for each combination of h, n and the distribution of g

t
. In order to investigate sizes and

powers of Q(M) and Q2 (M) with M=6, we estimated the simulated data under the
assumption that a3=0 for the  process and a2=0 for the  process, and
computed the values of Q(M) and Q2 (M). Although there is no theoretical result when
g
t
~t3 , we still can compute the value of Q2 (M) empirically because of Remark 3. Table 2
displays proportions of rejections based on the upper 5th percentile of the corresponding
asymptotic x2

6
distribution. Note that, when the generating process (5·1) or (5·2) is rewritten

in the form (2·3), the parameter a3=0·2 or a2=0·2 will change to 0·091 for the normal
distribution, 0·063 for the t5 distribution and 0·039 for the t3 distribution. Accordingly the
powers in Table 2 decrease as the distribution of g

t
becomes more heavy tailed. It can

be seen that Q2 (M) still has about the right size for the t3 distribution when n=200.
For larger sample sizes, n=500 and n=1000, the sizes of Q(M) are all very close to 0·05
and are actually better than those of Q2 (M) overall. All the powers of Q(M) are larger
than those of Q2 (M). This dominance of Q(M) over Q2 (M) in terms of power is all the
more remarkable under the heavy-tailed t distributions. This suggests that Q(M) is
the superior test.

Table 2: Second simulation study. T he empirical size and power of Q(M) and Q2 (M), based
on 1000 replications and M=6

Size Power Size Power
Distribution n Q(M) Q2 (M) Q(M) Q2 (M) Q(M) Q2 (M) Q(M) Q2 (M)

 model  model
t3 200 0·036 0·046 0·170 0·126 0·055 0·053 0·123 0·096

500 0·051 0·060 0·390 0·200 0·052 0·044 0·258 0·107
1000 0·051 0·058 0·631 0·242 0·049 0·056 0·391 0·141

t5 200 0·039 0·047 0·224 0·178 0·046 0·043 0·173 0·111
500 0·047 0·055 0·562 0·348 0·052 0·049 0·375 0·199
1000 0·049 0·054 0·860 0·548 0·049 0·055 0·598 0·291

N(0, 1) 200 0·041 0·046 0·281 0·276 0·043 0·027 0·201 0·142
500 0·056 0·055 0·665 0·654 0·053 0·034 0·452 0·365
1000 0·052 0·053 0·946 0·937 0·053 0·043 0·804 0·684

As a real application, we considered the simple rate of daily return, as a percentage, of
the Hong Kong Hang Seng Index during (1993–2002). There were 2471 observations and
an autoregressive model was considered first:

X
t
=0·0376X

t−1
−0·0417X

t−2
+0·0954X

t−3
−0·0508X

t−4
−0·0369X

t−5
+e
t
.

Figure 1 shows the histogram of the residuals e@
t
corresponding to the above model. It

suggests that the residuals e@
t
are more heavy tailed than the normal distribution. This

fact is supported by the fact that the sample kurtosis of the e@
t
is approximately 8. Thus

the maximum likelihood estimate or quasi-maximum-likelihood estimate is not suitable.
The least absolute deviation method was used to estimate the following  model
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Fig. 1: Hang Seng Index data. The histogram of the
residuals e@

t
and the normal density with the same
mean and variance.

for the residuals e@
t
:

e
t
=e
t
h1/2
t
, h
t
=a
0
+ ∑
p

j=1
a
j
e2
t−j
,

where Ee
t
=0 and the median of e2

t
was equal to one. Note that here e

t
was not assumed

to be normally distributed. We considered least absolute deviation estimation for three
models with p=6, p=7 and p=8. The initial value for a0 was 1·6 and the initial value
for the other parameters was 0·01. The methodology for diagnostic checking in §§ 2–4 was
applied to these three models. We set M to be 10 and the values for m, m*, d, d*, s2, (s*)2
and f (0) were estimated with the methods mentioned in §§ 3 and 4. The bandwidth was set
to be 0·1 for the estimation of f ( . ). Our major interest concerns which of the three models
can fit the data adequately. Table 3 presents the absolute residual autocorrelations rA k ,
the squared residual autocorrelations rAk and their asymptotic standard errors Ak , where
k=1, 2, 4, 8. The complete table is available upon request. The overall test statistics Q (10)
and Q2 (10) are also recorded in the same table. Based on the upper 5% significance level
of the x2

10
distribution, the  (8) model fits the data adequately according to both

statistics Q(M) and Q2 (M), and all individual absolute residual autocorrelations and

Table 3. Model diagnostic checking results for the daily simple rate of return
of the Hong Kong Hang Seng Index (1993–2002). Absolute residual auto-
correlations, rA k , squared residual autocorrelations, rAk , and with standard

errors in parentheses

r=6 p=7 p=8
k rA k rAk rA k rAk rA k rAk
1 0·0307 0·0330 0·0309 0·0346 0·0195 0·0254

(0·0198) (0·0221) (0·0205) (0·0228) (0·0254) (0·0271)

2 −0·0295 −0·0284 −0·0265 −0·0255 −0·0265 −0·0241
(0·0198) (0·0218) (0·0206) (0·0225) (0·0255) (0·0264)

4 −0·0263 −0·0267 −0·0208 −0·0233 −0·0022 −0·0100
(0·0198) (0·0216) (0·0205) (0·0223) (0·0251) (0·0261)

8 0·0675 0·0464 0·0645 0·0464 −0·0169 −0·0242
(0·0201) (0·0202) (0·0202) (0·0202) (0·0248) (0·0255)

Q(10) 33·5144 24·2346 8·1166
Q2 (10) 20·9291 16·4843 7·3396
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squared residual autocorrelations are nonsignificant, if the correct asymptotic critical value
1·96A

i
is used. For the  (7), both residual autocorrelations at lag 8 are significantly

different from zero using the critical value 1·96A
i
. The model is correctly rejected by Q(M).

However, this model is regarded as adequate according to Q2 (M), which is consistent
with the observation that the portmanteau statistic Q2 (M) is less powerful under a heavy-
tailed situation. The  (6) model is inadequate according to both criteria and there
are four absolute residual autocorrelations and one squared residual autocorrelation that
are significantly different from zero according to the critical value 1·96A

i
.
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