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Summary. The least absolute shrinkage and selection operator (‘lasso’) has been widely used
in regression shrinkage and selection. We extend its application to the regression model with
autoregressive errors. Two types of lasso estimators are carefully studied. The first is similar
to the traditional lasso estimator with only two tuning parameters (one for regression coeffi-
cients and the other for autoregression coefficients). These tuning parameters can be easily
calculated via a data-driven method, but the resulting lasso estimator may not be fully efficient.
To overcome this limitation, we propose a second lasso estimator which uses different tuning
parameters for each coefficient. We show that this modified lasso can produce the estimator as
efficiently as the oracle. Moreover, we propose an algorithm for tuning parameter estimates to
obtain the modified lasso estimator. Simulation studies demonstrate that the modified estimator
is superior to the traditional estimator. One empirical example is also presented to illustrate the
usefulness of lasso estimators.The extension of the lasso to the autoregression with exogenous
variables model is briefly discussed.

Keywords: Autoregression with exogenous variables; Lasso; Oracle estimator; Regression
model with autoregressive errors

1. Introduction

The linear regression model is a commonly used statistical tool for analysis of the relationships
between response and explanatory variables. One of its standard assumptions is that different
observations are independent. However, significant serial correlation might occur when the data
are collected sequentially in time. In this case, the linear regression with autoregressive errors
(REGAR) model is often considered, as it takes into account the autocorrelated structure in
regression analysis (Shumway and Stoffer, 2000; Tsay, 1984; Harvey, 1981).

In model building, it is known that making the model unnecessarily complex can degrade the
efficiency of the resulting parameter estimator and yield less accurate predictions. Hence, two
heuristic selection criteria, Akaike’s information criterion AIC (Akaike, 1973) and the Bayes
information criterion BIC (Schwarz, 1978), are often applied to select regression variables. In the
context of time series, both criteria are also employed to choose the order of the autoregressive
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process (Brockwell and Davis, 1991; Choi, 1992; McQuarrie and Tsai, 1998; Shumway and
Stoffer, 2000). Moreover, Ramanathan (1989) extended the application of AIC and BIC to the
linear REGAR model. However, as noted by various researchers, the statistical performance of
AIC and BIC can be unstable (Breiman, 1996), and selection bias may cause inference problems
(Hurvich and Tsai, 1990).

To amend the deficiencies of classical linear model selections, Tibshirani (1996) developed
the least absolute shrinkage and selection operator (‘lasso’), which selects variables and estimates
parameters simultaneously. This motivated us to obtain the shrinkage estimator in the autore-
gressive process. For this, we employ the lasso-type penalty not only on the regression coefficients
but also on the autoregression coefficients. Consequently, a direct extension of the lasso to the
REGAR model involves two regularization parameters (i.e. one for regression coefficients and
the other for autoregression coefficients), which can be easily tuned via a data-driven method
(e.g. cross-validation). We show that the resulting lasso estimator satisfies a Knight–Fu-type
asymptotic property (Knight and Fu, 2000). However, it suffers an appreciable bias (Fan and
Li, 2001). Hence, the traditional lasso estimator cannot achieve the same efficiency as the oracle,
i.e. the estimator that is obtained on the basis of the true model (Fan and Li, 2001).

To improve the utility of the traditional lasso approach to the REGAR model, we mod-
ify the penalty function so that different tuning parameters can be used for each coefficient.
As a result, large amounts of shrinkage can be used for the insignificant variables, whereas
small amounts of shrinkage can be used for the significant variables. We show that the result-
ing modified lasso estimator shares the same asymptotic distribution as the oracle. In practice,
however, simultaneously tuning many regularization parameters is not realistic. Therefore, we
further propose a tuning parameter algorithm via the unpenalized REGAR estimator. Sim-
ulation studies indicate that the resulting lasso estimator outperforms the traditional lasso
estimator.

The rest of the paper is organized as follows. Section 2 introduces the REGAR model and the
two lasso estimators. Asymptotic theory for the two lasso estimators is established in Section 3.
The practical implementations of these two estimators are developed in Section 4, and numerical
studies are presented in Section 5. Section 6 concludes the paper with a brief discussion.

2. Least absolute shrinkage and selection operators

Consider the REGAR model

yt =x′
tβ + et .t =1, . . . , n0/, .1/

where xt = .xt1, . . . , xtp/′ is the p-dimensional regression covariate and β = .β1, . . . , βp/′ is the
associated regression coefficient. In addition, the variable et follows the autoregressive process

et =φ1et−1 +φ2et−2 + . . .+φqet−q + "t , .2/

where φ= .φ1, . . . , φq/′ is the autoregression coefficient and "t are independent and identically
distributed random variables with mean 0 and variance σ2. Moreover, we define the regres-
sion and autoregressive parameters as θ= .β′, φ′/′. For practical implementation, it is common
practice to standardize the predictor xtj so that it has zero mean and unit variance (Tibshirani,
1996). Analogously, the response yt is scaled by dividing it by the estimate of var.et/

1=2.
Suppose that "t in model (2) follows a normal distribution and the first q observations are fixed.

Then the conditional likelihood function of the remaining n0 −q observations, .yq+1, . . . , yn0/′,
is
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{
yt −x′

tβ −
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j=1
φj.yt−j −x′

t−jβ/

}2
⎤⎦,

where n=n0 −q is the effective sample size. Maximizing this likelihood function yields a condi-
tional maximum likelihood estimator of θ. This estimator can also be obtained by minimizing
the least-squares-type objective function

Ln.θ/=
n0∑

t=q+1

{
yt −x′

tβ −
q∑

j=1
φj.yt−j −x′

t−jβ/

}2

, .3/

where Ln.θ/ is an extension of the method that was proposed by Cochrane and Orcutt (1949)
for q=1; see Harvey (1981) and Hamilton (1994).

To shrink unnecessary coefficients to 0, we next adapt Tibshirani’s (1996) approach for obtain-
ing the estimator by minimizing the lasso criterion

Qn.θ/=
n0∑

t=q+1

{
yt −x′

tβ −
q∑

j=1
φj.yt−j −x′

t−jβ/

}2

+n
p∑

j=1
λ|βj|+n

q∑
j=1

γ|φj|: .4/

Because the lasso uses the same tuning parameters λ and γ for the regression and autoregressive
coefficients respectively, the resulting estimator θ̂= .β̂

′
, φ̂′/′ may suffer an appreciable bias. This

is mainly because all the regression (or autoregression) coefficients share the same amount of
shrinkage (see Fan and Li (2001)). To overcome this limitation, we propose the modified lasso
criterion, which will be denoted by lassoÅ,

QÅ
n .θ/=

n0∑
t=q+1

{
yt −x′

tβ −
q∑

j=1
φj.yt−j −x′

t−jβ/

}2

+n
p∑

j=1
λÅ

j |βj|+n
q∑

j=1
γÅ

j |φj|, .5/

which allows for different tuning parameters λÅ
j and γÅ

j for different coefficients. As a result, a
larger amount of shrinkage can be applied to the insignificant coefficients, whereas a smaller
amount of shrinkage can be applied to the significant coefficients. Hence, the resulting estimator
θ̂
Å = .β̂

Å′
, φ̂Å′/′ is expected to have a smaller bias than θ̂. Detailed investigations of these two

estimators are given in the next section.

3. Theoretical properties

To study the theoretical properties of the two lasso estimators, we assume that there
is a correct model with the regression and autoregression coefficients θ0 = .β0′, φ0′/′ =
.β0

1 , . . . , β0
p, φ0

1, . . . , φ0
q/′. Furthermore, we assume that there are a total of p0 � p non-zero

regression coefficients and q0 � q non-zero autoregression coefficients. For convenience, we
define S1 = {1 � j � p : β0

j �= 0} and S2 = {1 � j � q : φ0
j �= 0}. Then, the sets S1 and S2 respec-

tively contain the indices of the significant regression and autoregression coefficients, and
their complements Sc

1 and Sc
2 respectively contain the indices of the insignificant regression

and autoregression coefficients. Next, let βS1 denote the p0 ×1 significant regression coefficient
vector with β̂S1

as its associated lasso estimator. Moreover, other related parameters and their
corresponding estimators are analogously defined (e.g. βSc

1
, β̂Sc

1
, β̂

Å
S1

, φS2 and φ̂S2 ). Finally, let
θ0

1 = .β0′
S1

, φ0′
S2

/′ and θ0
2 = .β0′

Sc
1
, φ0′

Sc
2
/′. Then, θ̂k and θ̂

Å
k ( k = 1, 2) are the associated lasso and

modified lasso estimators respectively. To investigate the theoretical properties of θ̂ and θ̂
Å

, we
introduce the following conditions.
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(a) The sequence {xt} is independent of {"t}.
(b) All roots of the polynomial 1−Σq

j=1φ
0
jzj are outside the unit circle.

(c) The error "t has a finite fourth-order moment, i.e. E."4
t /<∞.

(d) The covariate xt is strictly stationary and ergodic with finite second-order moment (i.e.
E‖xt‖2 <∞). Furthermore, the following matrix is positive definite:

B=E

{(
xt −

q∑
j=1

φ0
jxt−j

)(
xt −

q∑
j=1

φ0
jxt−j

)′}
:

The technical conditions above are typically used to assure the
√

n-consistency and asymptotic
normality of the unpenalized least square estimator.

3.1. The lasso estimator
In this subsection, we study the property of the traditional lasso estimator given below.

Theorem 1. Assume that λn
√

n→λ0 and γn
√

n→γ0 for some λ0 �0 and γ0 �0. Then, under
conditions (a)–(d), we have .θ̂ −θ0/

√
n→d arg min{κ.δ/}, where

κ.δ/=−2δ′w + δ′Σδ +λ0

p∑
j=1

{uj sgn.β0
j /I.β0

j �=0/+|uj| I.β0
j =0/}

+γ0

q∑
j=1

{vj sgn.φ0
j/ I.φ0

j �=0/+|vj|I.φ0
j =0/},

δ = .u′, v′/′, w ∼N.0, σ2Σ/, Σ=diag.B, C/, C = .ξ|i−j|/ and ξk =E.etet+k/:

The proof is given in Appendix A. Theorem 1 shows that the lasso estimator has a Knight–
Fu-type asymptotic property (Knight and Fu, 2000). This implies that the tuning param-
eters that are used in the traditional lasso estimator cannot shrink to 0 at a speed faster
than n−1=2. Otherwise, both λ0 and γ0 degenerate to 0 and κ.δ/ becomes a standard quadratic
function,

κ.δ/=κ.u, v/=−2.u′, v′/w + .u′, v′/Σ.u′, v′/′,

which cannot produce sparse solutions. Therefore, theorem 1 suggests that λ0 > 0 and γ0 > 0
are needed for obtaining the traditional lasso estimator.

Remark 1. In a standard regression model with independent observations, Fan and Li (2001)
noticed that the traditional lasso estimator may suffer an appreciable bias. Therefore, it is of
interest to investigate whether the traditional lasso estimator for the REGAR model encounters
the same problem. For illustration, we consider a special case with β0

j >0 for 1�j �p and φ0
j =0

for 1� j �q. If the minimizer of κ.δ/ can correctly identify the true model, then u �=0 but v=0.
In addition, κ.δ/ satisfies the equation

@κ.u, 0/

@u
=−2w1 +2u′B+λ01=0,

where w1 consists of the first p components of w and 1 is a p× 1 vector with elements 1. As a
result,
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.β̂ −β0/
√

n→
d

u=B−1.w1 −0:5λ01/,

which is distributed as N.−0:5λ0B−11, B−1/. Because λ0 >0, theorem 1 indicates that the tradi-
tional lasso estimator is asymptotically biased. Thus, it is not as efficient as the oracle estimator,
whose asymptotic distribution is N.0, B−1/.

3.2. The modified lasso estimator
In this subsection, we focus on the modified lasso estimator. To facilitate a study of the properties
of this estimator, we introduce the notation

an =max.λÅ
j1

, γÅ
j2

, j1 ∈S1, j2 ∈S2/,

bn =min.λÅ
j1

, γÅ
j2

, j1 ∈Sc
1, j2 ∈Sc

2/,

where λÅ
j1

and γÅ
j2

are functions of n. We first investigate the consistency of the modified lasso
estimator lassoÅ.

Lemma 1. Assume that an =o.1/ as n→∞. Then, under conditions (a)–(d), there is a local
minimizer θ̂

Å
of QÅ

n .θ/ such that

θ̂
Å −θ0 =Op.n−1=2 +an/:

The proof is given in Appendix B. Lemma 1 implies that, if the tuning parameters that are
associated with the significant regression variables and autoregressive orders converge to 0 at a
speed that is faster than n−1=2, then there is a local minimizer of QÅ

n .θ/ which is
√

n consistent.
We next show that, if the tuning parameters that are associated with the non-significant

regression and autoregressive variables shrink to 0 slower than n−1=2, then their regression and
autoregression coefficients can be estimated exactly as 0 with probability tending to 1.

Theorem 2. Assume that bn
√

n→∞ and ‖θ̂Å −θ0‖=Op.n−1=2/. Then

P.β̂
Å
Sc

1
=0/→1 and P.φ̂Å

Sc
2
=0/→1:

The proof is in Appendix C. Theorem 2 shows that the modified lasso can consistently produce
a sparse solution for insignificant regression and autoregression coefficients. Furthermore, this
theorem, together with lemma 1, indicates that the

√
n-consistent estimator θ̂

Å
must satisfy

P.θ̂
Å
2 = 0/ → 1 when the tuning parameters fulfil the appropriate conditions (for example, λj

and γj are defined as in equations (7) of the next section). Finally, we obtain the asymptotic
distribution of the modified lasso estimator.

Theorem 3. Assume that an
√

n → 0 and bn
√

n → ∞. Then, under conditions (a)–(d), the
component θ̂

Å
1 of the local minimizer θ̂

Å
that is given in lemma 1 satisfies

.θ̂
Å
1 −θ0

1/
√

n→
d

N.0, σ2Σ−1
0 /,

where Σ0 is the submatrix of Σ corresponding to θ0
1.

The proof is given in Appendix D. Theorem 3 implies that, if the tuning parameters satisfy
the conditions an

√
n → 0 and bn

√
n → ∞, then, asymptotically, the resulting modified lasso

estimator can be as efficient as the oracle estimator.
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4. Algorithm

After arriving at an understanding of the properties of the two lasso estimators, it is natural to
implement them for real applications. For this, we propose the following algorithm to obtain the
local minimizers for lasso estimators θ̂ and θ̂

Å
. In addition, we provide an approach to estimate

simultaneously a total of p+q tuning parameters for the modified lasso estimator.

4.1. The iterative process
The objective function QÅ

n .θ/ contains Qn.θ/ as a special case (i.e. λj =λ and γj =γ). There-
fore, we focus mainly on the optimization problem of QÅ

n .θ/ in the rest of this section. Because
equation (5) contains both regression and autoregression parameters, it is sensible to optimize
the objective function QÅ

n .θ/ iteratively by minimizing the following two lasso-type objective
functions:

n0∑
t=q+1

{
yt −x′

tβ −
q∑

j=1
φj.yt−j −x′

t−jβ/

}2

+n
p∑

j=1
λj|βj| with a fixed φ

and

n0∑
t=q+1

{
yt −x′

tβ −
q∑

j=1
φj.yt−j −x′

t−jβ/

}2

+n
q∑

j=1
γj|φj| with a fixed β:

As a result, many well-developed procedures can be used to find the solution for the above
non-concave penalized functions, e.g. quadratic programming (Tibshirani, 1996), the shooting
algorithm (Fu, 1998), the local quadratic approximation (Fan and Li, 2001) and, most recently,
the least angle regression method (Efron et al., 2004). For simplicity, we adapt the local quad-
ratic approximation procedure, which was first developed by Fan and Li (2001) and has been
used extensively in the literature (for example, see Fan and Li (2002), Fan and Peng (2004) and
Cai et al. (2005)). Our simulation studies indicate that this procedure converges with a reasonable
degree of speed and accuracy.

Remark 2. The solution of the local quadratic approximation does not yield a sparse solution.
However, the small parameter estimate that is produced by the local quadratic approximation
can be arbitrarily close to 0, as long as a sufficiently small threshold for its tolerance of accu-
racy is set up. For illustration, ordinary linear regression is considered. In this case, the local
quadratic approximation produces the one-step-ahead estimate β.m+1/ by minimizing

‖Y −Xβ.m+1/‖2 +n
p∑

j=1
λj

.β
.m+1/
j /2

|β.m/
j |

,

where Y = .y1, . . . , yn0/′ and X= .x1, . . . , xn0/′. If one of the coefficients (e.g. β
.m/
1 ) is very small

(but not sparse), then the ridge effect that is induced by β
.m/
1 , λ1=|β.m/

1 |, can be very large. As a
result, the value of |β.m+1/

1 | is forced to be even smaller. Because this is an iterative process, the
value of |β.m/

1 | can be arbitrarily close to 0 as long as we can have a sufficiently small threshold
for accuracy. Therefore, it is possible to set up an arbitrarily small thresholding value to shrink
small estimates to be exactly 0. By doing so, the sparse solution is obtained. In simulation stud-
ies, we use the thresholding value 10−9 so that any coefficient whose absolute value is smaller
than 10−9 is shrunk to be exactly 0.
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4.2. Local convexity
Although the iterative process proposed is easy to implement, we cannot be assured that the
resulting estimator converges to the global minimizer. This is because the least squares term,
Ln.θ/, in the objective function QÅ

n .θ/ is not a convex function. This motivates us to develop the
following theorem, which shows that there is a sufficiently small but fixed local region containing
the true parameter in which Ln.θ/ is almost surely guaranteed to be convex.

Theorem 4. There is a probability null set N0 and a sufficiently small but fixed δ > 0 such
that, for any ω =∈N0, there is an integer nω such that, for any n>nω, Ln.θ/ is convex in θ∈Bδ,
where Bδ ={θ :‖θ −θ0‖< δ} is a ball containing the true value θ0.

The proof of theorem 4 can be obtained on request from the authors. Theorem 4 indicates
that, with probability tending to 1, there will be at most one local minimizer in Bδ. According
to lemma 1, θ̂

Å
exists and is consistent in probability. Hence, theorem 4 together with lemma

1 imply that, with probability tending to 1, θ̂
Å

is the unique local minimizer in Bδ. As a result,
the desired local minimizer θ̂

Å
can be obtained by finding the unique local minimizer in Bδ.

Remark 3. Theorem 4 is applicable not only for the modified lasso estimator θ̂
Å

but also for
the traditional lasso estimator θ̂. Specifically, theorem 4 together with theorem 1 imply that
θ̂ can be obtained by finding the unique local minimizer in Bδ. In practice, however, it is not
necessary to know Bδ exactly. This is because, if the initial estimator is consistent, then it must
be within Bδ with a probability tending to 1. As a result, the iterative process proposed (with
aforementioned initial estimator) leads to the local minimizer (i.e. θ̂

Å
or θ̂) in Bδ with probability

tending to 1.

4.3. Initial estimator
To obtain the consistent estimator for the iterative process, we suggest the following ordinary
least squares estimator as an initial estimator for the regression coefficient β0:

β̂
.0/ = .X′X/−1.X′Y/:

Using the fact that "t is independent of xt (see condition (a) in Section 3), it can be shown that
β̂

.0/
is a consistent estimator of β0 under classical regularity conditions. Then, computing the

ordinary residual êt =yt −x′
t β̂

.0/
and employing the least squares approach by fitting êt versus

.êt−1, . . . , êt−q/, we obtain the following initial estimator for the autoregressive coefficient φ0:

φ̂.0/ = .W ′W/−1.W ′V/,

where V = .êq+1, . . . , ên0/′ and W is an n×q matrix with tth row given by .êt+q−1, . . . , êt/. It can
also be shown that φ̂.0/ is a consistent estimator of φ0 under classical regularity conditions.

4.4. Tuning parameters
After obtaining the initial estimator, we need to select the tuning parameters in the iterative
process to complete the whole algorithm. The traditional lasso estimator contains only two tun-
ing parameters (i.e. λ and γ). Hence, we can directly apply the commonly used cross-validation
(CV) method to select the optimal tuning parameters. Because of the time series structure, we
use the first half of the data for model training and the rest for model testing. In the classical
linear regression setting, however, Shao (1997) indicated that BIC would perform better than
CV if the true model has a finite dimension and is among the candidate models. This motivates
us to adapt the BIC-type tuning parameter selector of Zou et al. (2004):

BIC= log.σ̂2/+ d̂f log.n/=n, .6/
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where

σ̂2 =n−1
n0∑

t=q+1

{
yt −x′

t β̂ −
q∑

j=1
φ̂j.yt−j −x′

t−jβ̂/

}2

and d̂f is the number of non-zero coefficients of θ̂.
As for the modified lasso estimator, it becomes a challenging task since there are p + q

regularization parameters that need to be tuned. Following a referee’s suggestion, we propose
the adaptive estimators

λÅ
j =λÅ log.n/=n|β̃j|,

γÅ
j =γÅ log.n/=n|φ̃j|,

.7/

where θ̃= .β̃′, φ̃′/′ is the unpenalized least square estimator by assuming that λ=γ =0 in equa-
tion (4). In addition, both λÅ and γÅ are positive constants and estimated from the data. The
advantage of expression (7) is that it converts the original .p+q/-dimensional tuning problem
for finding λj and γj into a two-dimensional task for searching λÅ and γÅ, which can be easily
determined by using either CV or BIC.

According to theorem 1, θ̃ is a
√

n-consistent estimator of θ0. Hence, for any β0
j �= 0 and

φ0
j �= 0, we have λÅ

j = Op{log.n/=n} = op.n−1=2/ and γÅ
j = Op{log.n/=n} = op.n−1=2/. Conse-

quently, both λÅ
j and γÅ

j satisfy the condition an
√

n→0, where an is defined in Section 3.2. In
contrast, for any β0

j =0 and φ0
j =0, theorem 1 implies that β̃j =Op.n−1=2/ and φ̃j =Op.n−1=2/.

Therefore,

λÅ
j

√
n=λÅ log.n/=β̃j

√
n

and

γÅ
j

√
n=γÅ log.n/=φ̃j

√
n,

where the denominators of the above equations are Op.1/ and the numerators go to ∞ as
n→∞. As a result, λÅ

j

√
n→p ∞ and γÅ

j

√
n→p ∞, which imply that both satisfy the condition

bn
√

n→∞, where bn is defined in Section 3.2. In sum, the proposed tuning parameters λÅ
j and

γÅ
j can produce the modified lasso estimator θ̂

Å
, which is as efficient as the oracle estimator

asymptotically.

5. Simulation and example

5.1. Simulation results
We present Monte Carlo simulations to evaluate the finite sample performance of the lasso
estimators. They consist of the traditional and modified lasso estimators with the tuning param-
eters selected by CV and BIC respectively. For the traditional lasso estimator, we adapt
Zou and Hastie’s (2005) approach to select the optimal tuning parameters λ̂ and γ̂ from the
grid points {0, 0:01, 0:1, 1:0, 10, 100}. For the modified lasso estimator, the optimal tuning
parameter τ̂ is selected from one of six equally spaced grid points from 0 to 0.5 (i.e. 0, 0.1,
0:2, . . . , 0:5). Our simulation experience suggests that such a search region and spacing
work satisfactorily. In addition, the estimation algorithm stops if Σj |θ.m/

j − θ
.m+1/
j | < 10−12,

where θ .m/ = .θ
.m/
1 , . . . , θ.m/

p+q/′ is the estimator of θ at the mth iteration, θ
.m/
j = β

.m/
j for j =

1, . . . , p and θ
.m/
j =φ

.m/
j−p for j =p+1, . . . , p+q. When convergence is obtained, any parameter

estimator whose absolute value is less than 10−9 is shrunk to 0. On the basis of our extensive
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simulation studies, the above proposed stopping and shrinking rules lead to a reasonable speed
of convergence.

We generated the data from the REGAR model

yt =3:0xt1 +1:5xt2 +2:0xt5 + et , .8/

where

et =0:5et−1 −0:70et−3 +σ"t , .9/

and "t were independent and identically standard normal random variables for t = 1, . . . , n0.
The regression and autocorrelated coefficients are β0 = .3, 1:5, 0, 0, 2, 0, 0, 0/′ and φ0 = .0:50, 0,
−0:70, 0, 0/′ respectively. In addition, the covariates xt = .xt1, . . . , xt8/′ were independently gen-
erated from the multivariate normal distribution with mean 08×1, and the pairwise correlation
between xtj1 and xtj2 is ρ|j1−j2|. Regression model (8) is adapted from Tibshirani (1996) and has
been used in other simulation studies (for example, see Fan and Li (2001), Zou et al. (2005) and
Leng et al. (2006)), whereas the autoregression model (9) is modified from Shi and Tsai (2004).

In this study, we consider three sample sizes (n0 =50, 100, 300) and two standard deviations
(σ =3:0 and σ =0:5). In addition, the correlation coefficients (ρ-values) are 0:75, 0:50 and 0:25,
which represent high, moderate and low linear correlations between the covariates. For each
setting, 1000 realizations were carried out, and the percentage of correctly estimated, underesti-
mated and overestimated numbers of regression variables, the percentage of correctly estimated,
underestimated and overestimated numbers of autoregressive orders, and the percentage of the
correct model identified by two lasso estimators were computed.

When ρ=0:5, Table 1 shows that the lasso performs poorly across various sample sizes and
noises. This is because its tuning parameter is fixed and therefore cannot effectively shrink non-
significant coefficients to 0. As a result, it tends to overfit in both regression and autoregression
variable selection. In contrast, the modified lasso with the CV selector (lasso*–CV) demonstrates
a considerably improved finite sample performance. Furthermore, the modified lasso with BIC
selector (lasso*–BIC) performs the best in correct model identifications across various sample
sizes and levels of noise. Moreover, as the sample size increases, the correct model percentage
approaches 100% rapidly. In sum, we recommend employing the estimator lasso*–BIC jointly
to choose variables and to estimate coefficients.

In addition to the correct model identification, a referee suggested comparing the prediction
accuracies of four lasso estimates in terms of their mean-squared prediction error. For this, we
generated an additional 10000 independent testing samples within each realization, which are
used to evaluate the accuracy of prediction. Analogously to the correct model selection results,
Table 1 shows that the lasso–CV estimator performs the worst, and the lasso*–BIC estima-
tor outperforms the rest. Similar patterns (which are not presented here) are also found when
ρ=0:25 and ρ=0:75.

5.2. Electricity demand study
We consider a data set that was taken from Ramanathan (1989), which studies the consumption
of electricity of residential customers served by the San Diego Gas and Electric Company. The
data contain a total of 53 quarterly observations, running from the first quarter of 1970 to
the first quarter of 1983. The response variable is electricity consumption, which is measured
by the log-transformed electricity consumption per residential customer in millions of kilowatt-
hours (LKWH). The five explanatory variables are the logarithm of per capita real income (LY),
the logarithm of real average price of residential electricity in dollars per kilowatt-hour (LELP),
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Table 1. Simulation results with ρD0:50

Estimator Tuning Regression variable Autoregressive order Correctly Median of
method fitted mean-squared

Under- Correctly Over- Under- Correctly Over- model prediction
fitted fitted fitted fitted fitted fitted error

σ =3.0, n=50
lasso CV 0.019 0.174 0.807 0.043 0.142 0.815 0.026 17.430

BIC 0.017 0.223 0.760 0.018 0.206 0.776 0.045 16.715
lasso* CV 0.078 0.412 0.510 0.063 0.585 0.352 0.245 16.228

BIC 0.101 0.578 0.321 0.074 0.752 0.174 0.455 15.382

σ =3.0, n=100
lasso CV 0.001 0.235 0.764 0.001 0.126 0.873 0.020 14.713

BIC 0.001 0.367 0.632 0.000 0.176 0.824 0.054 14.392
lasso* CV 0.003 0.572 0.425 0.002 0.654 0.344 0.376 13.826

BIC 0.003 0.852 0.145 0.003 0.932 0.065 0.796 13.504

σ =3.0, n=300
lasso CV 0.000 0.144 0.856 0.000 0.133 0.867 0.011 13.194

BIC 0.000 0.167 0.833 0.000 0.233 0.767 0.035 13.111
lasso* CV 0.000 0.683 0.317 0.000 0.678 0.322 0.449 12.900

BIC 0.000 0.946 0.054 0.000 0.971 0.029 0.919 12.862

σ =0.5, n=50
lasso CV 0.000 0.174 0.826 0.047 0.138 0.815 0.026 1.530

BIC 0.000 0.228 0.772 0.017 0.207 0.776 0.045 1.461
lasso* CV 0.000 0.566 0.434 0.056 0.579 0.365 0.340 1.320

BIC 0.000 0.802 0.198 0.071 0.758 0.171 0.636 1.275

σ =0.5, n=100
lasso CV 0.000 0.234 0.766 0.001 0.126 0.873 0.020 1.289

BIC 0.000 0.370 0.630 0.000 0.176 0.824 0.056 1.260
lasso* CV 0.000 0.623 0.377 0.002 0.650 0.348 0.416 1.189

BIC 0.000 0.941 0.059 0.003 0.930 0.067 0.877 1.165

σ =0.5, n=300
lasso CV 0.000 0.144 0.856 0.000 0.133 0.867 0.011 1.156

BIC 0.000 0.168 0.832 0.000 0.233 0.767 0.035 1.148
lasso* CV 0.000 0.685 0.315 0.000 0.675 0.325 0.452 1.132

BIC 0.000 0.969 0.031 0.000 0.972 0.028 0.943 1.124

the logarithm of real ex post average price of residential gas in dollars per therm (LGSP), the
cooling degree days per quarter (CDD) and the heating degree days per quarter (HDD).

We first fit the data with the classical multiple-regression model, and the resulting estimated
equation is

LKWH=−8:988+0:819LY+0:154LELP−0:159LGSP+0:00012CDD+0:00042HDD:

The signs of the parameter estimates of variables LY, CDD and HDD meet our expectations.
In other words, an increase in real income (LY), the cooling degree days (CDD) or the heat-
ing degree days (HDD) yields more demand for heating. However, the variables LELP and
LGSP have unexpected signs since the higher electricity price (LELP) and the higher gas price
(LGSP) result in more and less electricity consumption respectively. Because these are time series
data, the unexpected signs may occur as a result of ignoring the autocorrelation structure.
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Table 2. Three models selected by the lasso and modified lasso for the electricity
demand study

Variable lasso–CV lasso–BIC lassoÅ–CV lassoÅ–BIC

LY 0.117796 0.196611 — —
LELP −0.150010 −0.154907 −0.168853 −0.168853
LGSP −0.035808 −0.057948 — —
CDD 0.000237 0.000246 0.000226 0.000226
HDD 0.000216 0.000231 0.000222 0.000222
LAG1 0.608868 0.598635 0.627451 0.627451
LAG2 −0.705199 −0.689985 −0.713343 −0.713343
LAG3 0.590666 0.581069 0.604899 0.604899
LAG4 0.253515 0.271175 0.225005 0.225005
χ2-test 0.039428 0.005632 0.305896 0.305896

Hence, Ramanathan (1989) naturally recommended the regression model with autoregressive
errors.

Following Ramanathan’s suggestion, we employ the lasso and modified lasso with CV and BIC
to shrink jointly both the regression and the autoregression coefficients. The p and q of the candi-
date models are 5 and 4 respectively, and the maximum autoregressive order 4 is naturally chosen
for the quarterly data. Table 2 indicates that the lasso with CV and BIC yields the most compli-
cated model, which is consistent with the simulation findings. This overfitted model also leads
to an unexpected sign on the variable LGSP. In contrast, both the modified lasso with CV and
the modified lasso with BIC estimators select the same yet simpler model with variable LELP,
CDD, HDD and four lags. It is noteworthy that the two important temperature variables CDD
and HDD are successfully identified by the modified lasso. In addition the sign of LELP is cor-
rected as compared with the full model regression estimate. To check the adequacy of the model
fitting, the χ2-test statistics for assessing the autocorrelation of residuals (see Box et al. (1994),
page 314) are computed (see the last row of Table 2). No statistically significant serial correlation
is detected in the residuals. In sum, the modified lasso estimator with either CV or BIC produces
the same simple, interpretable, yet adequate model fitting to the electricity demand data.

6. Discussion

In REGAR models, we propose the lasso approach to shrink jointly regression and autore-
gression coefficients. In contrast with the REGAR model, the autoregression with exogenous
variables model (Harvey, 1981; Shumway and Stoffer, 2000) provides an alternative approach
to take explicitly into account serial dependence via the lagged variables. Specifically, the auto-
regression with exogenous variables model is

yt =x′
tβ +

q∑
j=1

φt−jyt−j + "t:

To shrink the regression and lagged coefficients simultaneously, we consider the lasso criterion

n0∑
t=q+1

(
yt −x′

tβ −
q∑

j=1
φjyt−j

)2

+n
p∑

j=1
λÅ

j |βj|+n
q∑

j=1
γÅ

j |φj|:

Analogously to the REGAR model, it can be shown that the lasso approach produces a sparse
solution not only for exogenous variables but also for lagged dependent variables. Moreover,
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the resulting lasso estimator enjoys the oracle property when the tuning parameters satisfy the
proper conditions. Extensive simulation studies (which are not presented here) also indicate
their satisfactorily finite sample performance.

Finally, we identify three research areas for further study. The first is extending the appli-
cation of the lasso to both the dynamic regression model (Greene, 2003) and the regression
model with seasonal autoregressive errors. The second is to obtain the lasso estimator for the
regression model with autoregressive conditional heteroscedastic errors (Gouriéroux, 1997) and
the autoregressive and moving average with exogenous variables model (Shumway and Stoffer,
2000). The third is to investigate autoregressive shrinkage and selection by compressing the
partial autocorrelations sequentially. We believe that these efforts would further enhance the
usefulness of the lasso estimators in real data analysis.

Acknowledgements

The authors are grateful to the Joint Editor, Associate Editor and two referees for their con-
structive comments and insightful suggestions, which led to a substantial improvement of the
manuscript.

Appendix A: Proof of theorem 1

Let δ = .u′, v′/′, u= .u1, . . . , up/′ and v= .v1, . . . , vq/
′, and then define

κn.δ/=Qn.θ0 +n−1=2δ/−Qn.θ0/

=Ln.θ0 +n−1=2δ/−Ln.θ0/+nλn

p∑
j=1

.|β0
j +ujn

−1=2|− |β0
j |/+nγn

q∑
j=1

.|φ0
j +vjn

−1=2|− |φ0
j |/:

Adopting Knight and Fu’s (2000) approach, we have

nλn

p∑
j=1

.|β0
j +ujn

−1=2|− |β0
j |/→λ0

p∑
j=1

{uj sgn.β0
j / I.β0

j �=0/+|uj| I.β0
j =0/}

nγn

q∑
j=1

.|φ0
j +vjn

−1=2|− |φ0
j |/→γ0

q∑
j=1

{vj sgn.φ0
j / I.φ0

j �=0/+|vj| I.φ0
j =0/}:

Furthermore,

Ln.θ0 +n−1=2δ/−Ln.θ0/=∑
t

[
yt −x′

t .β0 +n−1=2u/−
q∑

j=1
.φ0

j +n−1=2vj/
{

yt−j −x′
t−j.β0 +n−1=2u/

}]2
−∑

t

"2
t

=∑
t

[
et −

q∑
j=1

.φ0
j +n−1=2vj/et−j −n−1=2u′

{
xt −

q∑
j=1

.φ0
j +n−1=2vj/xt−j

}]2
−∑

t

"2
t

=∑
t

{
"t −n−1=2

q∑
j=1

vjet−j −n−1=2u′
(

xt −
q∑

j=1
φ0

jxt−j

)
+n−1u′

q∑
j=1

vjxt−j

}2
−∑

t

"2
t

=R1 +R2 +R3 +R4 +R5,

where

R1 =−2n−1=2 ∑
t

(
"t

q∑
j=1

vjet−j

)
−2n−1=2u′ ∑

t

"t

(
xt −

q∑
j=1

φ0
jxt−j

)
,

R2 =2n−1u′ ∑
t

{( q∑
j=1

vjet−j

)(
xt −

q∑
j=1

φ0
jxt−j

)}

R3 =n−1 ∑
t

( q∑
j=1

vjet−j

)2
+n−1u′ ∑

t

(
xt −

q∑
j=1

φ0
jxt−j

)(
xt −

q∑
j=1

φ0
jxt−j

)′
u,
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R4 =2n−1 ∑
t

(
u′

q∑
j=1

vjxt−j

){
"t −n−1=2

q∑
j=1

vjet−j −n−1=2u′
(

xt −
q∑

j=1
φ0

jxt−j

)}
,

R5 =n−2u′ ∑
t

( q∑
j=1

vjxt−j

)( q∑
j=1

vjxt−j

)′
u:

Employing the martingale central limit theorem and the ergodic theorem, we can show that R1 →d −2δ′w,
R2 =op.1/, R3 →p δ′Σδ, R4 =op.1/ and R5 =op.1/. Consequently,

Ln.θ0 +n−1=2δ/−Ln.θ0/→
d

−2δ′w + δ′Σδ:

To show that

arg min{κn.δ/}→
d

arg min{κ.δ/},

we must prove that arg min{κn.δ/}=Op.1/. Note that

κn.δ/�∑
t

[{
"t −n−1=2

q∑
j=1

vjet−j −n−1=2u′
(

xt −
q∑

j=1
φ0

jxt−j

)
+n−1u′

q∑
j=1

vjxt−j

}2
− "2

t

]

−nλn

p∑
j=1

|ujn
−1=2|−nγn

q∑
j=1

|vjn
−1=2|

�∑
t

[{
"t −n−1=2

q∑
j=1

vjet−j −n−1=2u′
(

xt −
q∑

j=1
φ0

jxt−j

)}2
− "2

t

]

− .λ0 + "0/
p∑

j=1
|uj|− .γ0 + "0/

q∑
j=1

|vj|+ ξn.δ/

:= κ̃n.δ/,

where "0 > 0 is some positive constant. In addition, κn.0/ = κ̃n.0/ and ξn.δ/ = op.1/. Moreover, for all
δ and sufficiently large n, the quadratic terms in κ̃n.δ/ grow faster than the |uj| and |vj|. As a result,
arg min{κ̃n.δ/}= Op.1/ and arg min{κn.δ/}= Op.1/. Because arg min{κ.δ/} is unique with probability
1, the proof is complete.

Appendix B: Proof of lemma 1

Let αn =n−1=2 +an and {θ0 +αnδ :‖δ‖�d} be the ball around θ0. Then, for ‖δ‖=d, we have

Dn.δ/
:=QÅ

n .θ0 +αnδ/−QÅ
n .θ0/

�Ln.θ0 +αnδ/−Ln.θ0/+n
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Furthermore,
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A1 =α2
n

∑
t

{( q∑
j=1

vjet−j

)2
+u′

(
xt −

q∑
j=1

φ0
jxt−j

)(
xt −

q∑
j=1

φ0
jxt−j

)′
u
}

,

A2 =−2αn

∑
t

"t

{ q∑
j=1

vjet−j +u′
(

xt −
q∑

j=1
φ0

jxt−j

)}
,



76 H. Wang, G. Li and C.-L. Tsai

A3 =2α2
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)
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(
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Moreover, we have

A1 =nα2
n{δ′Σδ +op.1/},

A2 = δ′Op.nα2
n/,

A3 =nα2
n op.1/=op.nα2

n/,

A4 =nα3
n Op.1/=nα2

n op.1/=op.nα2
n/,

A5 =nα2
n op.1/=op.nα2

n/,

because A1 dominates the rest of the four terms in equation (11) and also nα2
n.p0 +q0/d in equation (10).

Hence, for any given "> 0, there is a large constant d such that

P [ inf
‖δ‖=d

{QÅ
n .θ0 +αnδ/}>QÅ

n .θ0/]�1− ":

This implies that, with probability at least 1− ", there is a local minimizer in the ball {θ0 +αnδ :‖δ‖�d}
(Fan and Li, 2001). Consequently, there is a local minimizer of QÅ

n .θ/ such that ‖θ̂Å −θ0‖=Op.αn/. This
completes the proof.

Appendix C: Proof of theorem 2

The proof of theorem 2 follows from the fact that the local minimizer θ̂
Å must satisfy the equation

@QÅ
n .θ̂

Å
/

@βj

= @Ln.θ̂
Å
/

@βj

−nλj sgn.β̂
Å
j /

= @Ln.θ0/

@βj

+nΣj.θ̂
Å −θ0/{1+op.1/}−nλj sgn.β̂

Å
j /, .12/

where Σj denotes the jth row of Σ and j ∈Sc
1 . Employing the central limit theorem, the first term in equa-

tion (12) is of order Op.n1=2/. Furthermore, the condition in theorem 2 implies that its second term is also
of order Op.n1=2/. Both are dominated by nλj since bn

√
n →∞. Therefore, the sign of equation (12) is

dominated by the sign of β̂
Å
j . Consequently, we must have β̂

Å
j =0 in probability. Analogously, we can show

that P.φ̂
Å
Sc

2
=0/→1. This completes the proof.

Appendix D: Proof of theorem 3

Applying lemma 1 and theorem 2, we have P.θ̂
Å
2 = 0/→ 1. Hence, the minimizer of QÅ

n .θ/ is the same as
that of QÅ

n .θ1/ with probability tending to 1. This implies that the lasso estimator θ̂
Å
1 satisfies the equation

@QÅ
n .θ1/

@θ1

∣∣∣
θ1=θ̂

Å
1

=0: .13/

According to lemma 1, θ̂
Å
1 is a

√
n-consistent estimator. Thus, the Taylor series expansion of equation (13)

yields
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0= 1√
n

@Ln.θ̂
Å
1 /

@θ1
+P.θ̂

Å
1 /

√
n

= 1√
n

@Ln.θ0
1/

@θ1
+P.θ0

1/
√

n+Σ0
√

n.θ̂
Å
1 −θ0

1/+op.1/,

where P is the first-order derivative of the penalty function
∑

j∈S1

λj|βj|+
∑

j∈S2

γj|φj|,

and P.θ̂
Å
1 / = P.θ0

1/ as n is sufficiently large. Furthermore, it can be easily shown that P.θ0
1/

√
n = op.1/,

which implies that

.θ̂
Å
1 −θ0

1/
√

n= Σ−1
0√
n

@Ln.θ0
1/

@θ1
+op.1/

d→N.0, σ2Σ−1
0 /:

This completes the proof.
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