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SUMMARY

We consider a unified least absolute deviation estimator for stationary and nonstationary
fractionally integrated autoregressive moving average models with conditional heteroscedasticity.
Its asymptotic normality is established when the second moments of errors and innovations are
finite. Several other alternative estimators are also discussed and are shown to be less efficient
and less robust than the proposed approach. A diagnostic tool, consisting of two portmanteau
tests, is designed to check whether or not the estimated models are adequate. The simulation
experiments give further support to our model and the results for the absolute returns of the Dow
Jones Industrial Average Index daily closing price demonstrate their usefulness in modelling
time series exhibiting the features of long memory, conditional heteroscedasticity and heavy
tails.
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1. INTRODUCTION

The fractionally integrated autoregressive moving average, ARFIMA or fractional ARIMA, process
was proposed by McLeod & Hipel (1978), Granger & Joyeux (1980) and Hosking (1981), and is
one of the most popular models for explaining the phenomenon of long memory in diverse fields
of statistical application, especially in the field of finance; see Robinson (2003). On the other
hand, since Engle (1982), it has been accepted that many financial time series have a time-varying
conditional variance. In fact, some financial time series may exhibit the features of both long
memory and time-varying conditional variance; these include the consumer price index inflation
series in Baillie et al. (1996), the Swiss Euromarket interest rate in Hauser & Hunst (2001) and
the absolute log return sequences in Tsay (2002). The generalized autoregressive conditional
heteroscedasticity, GARCH, models (Bollerslev, 1986) are usually considered for modelling the
phenomenon of time-varying conditional variance and it is natural to consider the ARFIMA–GARCH

model defined as follows:

φ(B)(1 − B)dYt = ψ(B)εt , (1)

εt = ut h
1/2
t , ht = α0 +

r∑
i=1

αiε
2
t−i +

s∑
j=1

β j ht− j , (2)
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where α0 > 0, αi � 0 (i = 1, . . . , r ) β j � 0 ( j = 1, . . . , s) B is the backward shift opera-
tor, φ(B) = 1 − ∑p

i=1 φi Bi , ψ(B) = 1 + ∑q
j=1 ψ j B j and (1 − B)d = ∑∞

k=0[�(k − d)/{�(k +
1)�(−d)}]Bk . Note that {εt } is the error sequence and members of the innovation sequence {ut }
are independently and identically distributed.

The parameter d describes the extent of long memory generated by the ARFIMA–GARCH model
and is called the memory parameter. The process generated by models (1) and (2) is short
memory, long memory, stationary or nonstationary, respectively, when d ∈ (−0·5, 0), (0,∞),
(−0·5, 0·5) or (0·5,∞); see Ling & Li (1997). It is important to estimate d as well as the other
parameters. When the errors {εt } are independent, many procedures, including time domain
and frequency domain methods, have been developed for model (1); see Bhardwaj & Swanson
(2006) and references therein. Under the normality of ut , Ling & Li (1997) established the
asymptotic normality of the maximum likelihood estimators. Beran & Feng (2001) considered
local polynomial estimation of semiparameteric models with an ARFIMA–GARCH error. However,
both papers required the condition E(ε4

t ) < ∞ resulting in a more restricted parameter space for
model (2); see Ling (2007). Francq & Zakoian (2004) discussed the asymptotic normality of the
Gaussian quasi-maximum likelihood estimators of the autoregressive moving average models
with GARCH errors, and finiteness of E(ε4

t ) was needed although finiteness of only a smaller-order
moment was required for pure GARCH models. The condition E(ε4

t ) < ∞ seems unavoidable for
such estimation approaches and it is necessary to develop a different method for ARFIMA–GARCH

models with a less restricted parameter space.
Furthermore, recent empirical evidence has increasingly shown that some financial time series

may be so heavy-tailed that the fourth moment of the innovation ut is infinite; see Mittnik et al.
(1998) and Mikosch & Starica (2000). Most existing estimation methods for fractional ARIMA and
ARFIMA–GARCH models are sensitive to outliers. Haldrup & Nielsen (2007) showed, by simulation
experiments, that some commonly used estimators of the fractional ARIMA models were not robust
to outliers and the estimators of memory parameters may be biased. Granger et al. (1999) applied
the fractional ARIMA models to several price indices, and Ling & Li (1997) fitted a ARFIMA–
GARCH model to the Hong Kong Heng Seng Index. In order to obtain a good estimator, outliers
were removed before estimation in both papers. However, it is well known that these outliers
may include useful information; see Embrechts et al. (1997). For pure GARCH processes with
E(u4

t ) = ∞, Hall & Yao (2003) showed that Gaussian quasi-maximum likelihood estimation may
not be asymptotically normal and the convergence rate is slower than the standard rate of n1/2. The
same may happen for models (1) and (2) with infinite fourth moment for ut . Peng & Yao (2003)
constructed three least absolute deviation estimators for the pure GARCH models and established
their asymptotic normality under only finite second moments of εt and ut . This approach may be
useful for providing robust estimation for ARFIMA–GARCH models.

2. THE LEAST ABSOLUTE DEVIATION ESTIMATION

Let l = p + q + r + s + 2 and denote the parameter vector of models (1) and (2) by λ =
(γ ′, δ′)′, where γ = (d, φ1, . . . , φp, ψ1, . . . , ψq )′, δ = (α0, α1, . . . , αr , β1, . . . , βs)′ and λ is an
l-dimensional vector. Assume that the parameter space 
 is a compact set of Rl , the true parameter
vector λ0 is an interior point of 
 and each λ in 
 satisfies the following two assumptions.

Assumption 1. We assume that αi > 0, i = 0, 1, . . . , r , β j > 0, j = 1, . . . , s, E(ε2
t ) < ∞, and

the polynomials
∑r

i=1 αi zi and 1 − ∑s
j=1 β j z j have no common root.
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Assumption 2. We assume that d > −0·5 and d �∈ J − 0·5, where J is the collection of all
positive integers. All roots of the polynomials φ(z) = 1 − ∑p

i=1 φi zi and ψ(z) = 1 + ∑q
j=1 ψ j z j

lie outside the unit circle and there is no common factor between φ(z) and ψ(z).

Denote Eu2
t by σ 2. Then the condition σ 2 ∑r

i=1 αi + ∑s
j=1 β j < 1 is necessary and sufficient

for {εt } in (2) to exist as a unique strictly stationary sequence with a finite second moment Li & Li
(2005). The cases with d ∈ J − 0·5 are very complicated (Beran, 1995; Ling & Li, 1997). Hence
we exclude them from the parameter space and leave them for possible future research.

Under Assumptions 1 and 2, model (1) is invertible and then εt can be written as

εt = φ(B)ψ−1(B)
∞∑

k=0

�(k − d)

�(k + 1)�(−d)
Yt−k .

When the true parameter vector in the above equation is replaced by λ ∈ 
, εt can be considered as
a function on 
 and hence can be denoted by εt (γ ) or εt (λ). Similarly, we can define the function
ht (λ) by the iterative equation α0 + ∑r

i=1 αiε
2
t−i (λ) + ∑s

j=1 β j ht− j (λ). These two functions
depend on the infinite past values of the sequences {Yt } and {εt }. They are unobservable in real
applications and some initial values are needed. For simplicity, we set the initial values of {Yt }
and {εt } to zero and replace ht and ε2

t for t � 0 by (1/n)
∑n

i=1 ε2
i . This will not affect the results

in the following derivation; see Bollerslev (1986) and Ling & Li (1997). Furthermore, to save
space and forestall confusion, we denote εt (λ0), ht (λ0), ∂εt (λ0)/∂γ and ∂ht (λ0)/∂λ respectively
by εt , ht , ∂εt/∂γ and ∂ht/∂λ.

There are two different approaches to defining the least absolute deviation estimators: one
is based on the sum of absolute errors and the other on Laplace quasi-maximum likelihood
estimation. These two methods are consistent with each other for linear models, but they
may be totally different for nonlinear models. For the difference between these two methods,
see Peng & Yao (2003) and Berkes & Horvath (2004) for the least absolute deviation esti-
mators of pure GARCH models. We first consider the sum of absolute errors for models (1)
and (2). Peng & Yao (2003) designed three least absolute deviation estimators by rewriting the
GARCH model in the forms of regression. A natural extension of the best of these three to the
ARFIMA–GARCH model is given by

λ̂PY = arg min
λ∈


n∑
t=1

|log ε2
t (λ) − log ht (λ)|.

However, in order to derive its asymptotic normality, the condition E(1/|ut |) < ∞ is required
and this excludes many familiar continuous distributions such as the normal distribution and
Student’s t-distributions. The other two estimators considered require a finite fourth moment
condition. Hence, this paper does not pursue this direction and focuses only on the method of
Laplace quasi-maximum likelihood estimation. By temporarily assuming a Laplace distribution
with density g(x) = 0·5 e−|x | for the innovation ut , we can define the least absolute deviation
estimator as

λ̂n = arg min
λ∈


Ln(λ), Ln(λ) =
n∑

t=1

[ |εt (λ)|
√ {ht (λ)} + 1

2
log ht (λ)

]
.

To investigate the asymptotic distribution of λ̂n , we need another assumption.

Assumption 3. The median of ut is equal to zero, E |ut | = 1, E(u2
t ) = σ 2 < ∞ and the prob-

ability density function f (x) of ut is continuous at the origin.
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When |d| < 0·5, under Assumptions 1 and 2, the processes {Yt } and {εt } generated by models
(1) and (2) are strictly stationary and ergodic with a finite second moment; see Ling & Li (1997).

Let µ = Eut and σ 2|u| = var(|ut |). We define the matrices


ε = E
(

1

ht

∂εt

∂γ

∂εt

∂γ ′

)
, 
1 =

(

ε 0
0 0

)
, 
2 = E

(
1

4h2
t

∂ht

∂λ

∂ht

∂λ′

)
,


3 = E

{
1

2h3/2
t

(
∂εt

∂λ

∂ht

∂λ′ + ∂ht

∂λ

∂εt

∂λ′

)}
, �1 = 
1 + σ 2

|u|
2 − µ
3,

�2 = f (0)
1 + 0·5
2,

where f (0) is the value of the probability density function f (x) of ut evaluated at zero, the
matrix 
ε is (p + q + 1) × (p + q + 1) and other matrices are l × l. Following the method in
Francq & Zakoian (2004), under Assumptions 1 and 2, we can show that the matrices �1 and �2

are positive definite.

THEOREM 1. Suppose that {Yt } are generated by models (1) and (2). Under Assumptions 1–3,
if |d| < 0·5, then there exists a sequence of local minimizers {λ̂n} of Ln(λ) such that

√
n(λ̂n − λ0) → N (0, 0·25�−1

2 �1�
−1
2 )

in distribution as n → ∞.

Following a suggestion from a referee, we have not assumed that E(ut ) = 0 in the above
theorem and the quantity µ = E(ut ) is included in the covariance matrix as a parameter.

For a complicated ARFIMA–GARCH model with many parameters, we may encounter compu-
tational difficulty in finding the least absolute deviation estimator λ̂n . If the innovation ut is
further assumed to have a symmetric distribution, then µ = 0 and 
2 is a block-diagonal matrix
since E{h−2

t (∂ht/∂γ )(∂ht/∂δ′)} is equal to zero. Hence, the matrices �1, �2 and �−1
2 �1�

−1
2 are

all block-diagonal. This implies that we can separately minimize the score function Ln(λ) with
respect to γ and δ without incurring an asymptotic loss of efficiency.

For the general case, a two-stage estimation approach seems more plausible in which we first
apply least absolute deviation estimation to the ARFIMA part to find a minimizer γ̃ , and then apply
the approach of Peng & Yao (2003) to the residuals {εt (γ̃ )} to find the estimator δ̃. Alternatively,
we may obtain γ̃LS = arg min

∑n
t=1 ε2

t (γ ) by least squares. However, to derive the asymptotic
normality of γ̃LS, we need to show that n−1/2 ∑n

t=1 εt (∂εt/∂γ ) converges in distribution to
a normal distribution with a finite variance E{ε2

t (∂εt/∂γ )(∂εt/∂γ ′)}. If {εt } are independent,
then the condition Eε2

t < ∞ is enough for the finiteness of E{ε2
t (∂εt/∂γ )(∂εt/∂γ ′)}, but the

assumption Eε4
t < ∞ is unavoidable for the ARFIMA–GARCH case. The simulation results in § 4

suggest that both two-stage estimators are inferior to the least absolute deviation estimator λ̂n .
This is not surprising since, by ignoring the full model, two-stage methods should have lower
efficiency. In real applications, the two-stage estimator can be used as an initial estimator and
then we can use the local quadratic approximation (Fan & Li, 2001) to minimize

n∑
t=1

[
ε2

t (γ )

|εt (γ (m))| √{ht (γ, δ)} + 1

2
log ht (γ, δ)

]

iteratively, where γ (m) is the minimizer in the mth iteration and γ (0) = γ̃ . The above score
function is sufficiently smooth and algorithms such as Newton–Raphson can be employed for the
optimization.
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When d > 0·5, the process {εt } generated by (2) is still stationary. However, the process {Yt }
generated by models (1) and (2) is nonstationary.

Let d = m + d f , where |d f | < 0·5 and m is a positive integer. If Ut = (1 − B)mYt , then Ut

follows the model φ(B)(1 − B)d f Ut = ψ(B)εt . This means that, after mth-order differencing,
the nonstationary process {Yt } will be transformed to a stationary ARFIMA(p, d f , q)–GARCH(r, s)
process {Ut }. We next consider the asymptotic behaviour of the least absolute deviation estimation
for the process {Ut }.

Let γ ∗ = (d f , φ1, . . . , φp, ψ1, . . . , ψq )′ and λ∗ = (γ ∗′, δ′)′, where the first elements d in both
λ and γ are replaced by d f . Denote by �∗

1 and �∗
2 the corresponding matrices associated with

{Ut } instead of {Yt }. By an argument similar to that in Beran (1995) and Ling & Li (1997), it can
be shown that �1 = �∗

1 and �2 = �∗
2 . Let L∗

n(λ) be the corresponding score function. Then, by
Theorem 1, there exists a sequence of local minimizers {λ̂∗

n} of L∗
n(λ) such that

√
n(λ̂∗

n − λ0) →
N (0, 0·25�−1

2 �1�
−1
2 ) in distribution as n → ∞.

Let λ̂n = λ̂∗
n + (m, 0, . . . , 0)′. Then λ̂n is a local minimizer of Ln(λ) and hence we have the

following results for the nonstationary ARFIMA–GARCH models.

THEOREM 2. Suppose that {Yt } are generated by models (1) and (2). Under Assumptions 1–3,
if d > 0·5, then there exists a sequence of local minimizers {λ̂n} of Ln(λ) such that

√
n(λ̂n − λ0) → N

(
0, 0·25�−1

2 �1�
−1
2

)
in distribution as n → ∞, where the matrices �1 and �2 are given as in Theorem 1.

The fractional ARIMA processes may sometimes include an unknown mean µY , leading to the
fractional ARIMA form

φ(B)(1 − B)d f {(1 − B)mYt − µY },
where |d f | < 0·5 and m � 0 is an integer. We follow Beran (1995) and Ling & Li (1997) in dealing
with this case. Let Ut = (1 − B)mYt and Û = (n − m)−1 ∑n

t=m+1 Ut . Then Û is a consistent
estimator of µY . We can centre the sequence {Ut } on Û and then the methodology introduced
before can be used. The simulation results in § 4 show that the estimators obtained by this method
are very similar to those obtained when the mean is known.

3. TWO PORTMANTEAU TESTS

This section constructs two portmanteau tests for checking whether or not the fitted ARFIMA–
GARCH models in the previous section are adequate. One test is based on the residual autocorre-
lations and the other is based on the absolute residual autocorrelations.

Let ε̂t and ĥt be the corresponding values when the parameter vector λ in functions εt (λ)
and ht (λ) is replaced by λ̂n , the least absolute deviation estimator from § 2. From the proof of
Theorem 1, up to op(1),

√
n(λ̂n − λ0) � 1

2
n−1/2�−1

2
∑n

t=1

{
1

2
(|ut | − 1)h−1

t
∂ht

∂λ
− sgn(ut )h

−1/2
t

∂εt

∂λ

}
. (3)

Note that {ε̂t/ĥ1/2
t } is the residual sequence. Then the lag-k residual autocorrelation is

r̂k =
∑n

t=k+1

(
ε̂t/ĥ1/2

t − µ̂n
)(

ε̂t−k/ĥ1/2
t−k − µ̂n

)∑n
t=1

(
ε̂t/ĥ1/2

t − µ̂n
)2 ,
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where µ̂n = n−1 ∑n
t=1 ε̂t/ĥ1/2

t , and the lag-k absolute residual autocorrelation is

ρ̂k =
∑n

t=k+1

(
|ε̂t |/ĥ1/2

t − 1
) (

|ε̂t−k |/ĥ1/2
t−k − 1

)
∑n

t=1

(
|ε̂t |/ĥ1/2

t − 1
)2 .

We next consider the asymptotic distributions of the first M residual autocorrelations and absolute
residual autocorrelations.

Let R̂ = (r̂1, . . . , r̂M )′ and κ = E{ut (|ut | − 1)}. Let X = (X1, . . . , X M ), Z = (Z1, . . . , Z M )
and 
4 = X ′�−1

2 Z + Z ′�−1
2 X , where Xk = E{(ut−k − µ)h−1/2

t (∂εt/∂λ)} and Zk = E{(ut−k −
µ)h−1

t (∂ht/∂λ)} with k = 1, . . . , M . Along the lines of Li (1992), by the approximation in (3),
Taylor expansion, the central limit theorem and the Mann–Wald device, we can show that

√
n R̂ → N (0, V1),

in distribution as n → ∞, where

V1 = I − 1

σ 4
X ′�−1

2 (�2 − 0·25�1)�−1
2 X + κ

4σ 4

4.

When the innovation ut is symmetrically distributed, the quantity κ is equal to zero and the last
term in the matrix V1 disappears.

Let ρ̂ = (ρ̂1, . . . , ρ̂M )′, Ĉ = (Ĉ1, . . . , ĈM )′ and C = (C1, . . . , CM )′, where

Ĉk = 1

n

n∑
t=k+1

(
|ε̂t |
ĥ1/2

t

− 1

) (
|ε̂t−k |
ĥ1/2

t−k

− 1

)
, k = 1, . . . , M,

and Ck is the corresponding value when λ̂n in Ĉk is replaced by the true parameter vector
λ0. Let Z∗ = (Z∗

1 , . . . , Z∗
M ) and 
5 = H ′�−1

2 Z∗ + Z∗′�−1
2 H , where Z∗

k = E{0·5(|ut−k |−
1)h−1/2

t (∂εt/∂λ)} with k = 1, . . . , M . We can show that n−1 ∑
(|ε̂t |/ĥ1/2

t − 1)2 = σ 2|u| + op(1),
and then it is sufficient to derive the asymptotic distributions of Ĉ . However, the vector Ĉ is a
function of λ̂n and this function is not smooth. The classical Taylor expansion cannot be used
here and this is just the main difficulty in deriving the asymptotic distribution of ρ̂. Fortunately,
by the inequalities in the Appendix, we can show that

Ĉ = C − H ′(λ̂n − λ0) + op
(
n−1/2), (4)

where H = (H1, . . . , HM ) and Hk = E{0·5(|ut−k | − 1)h−1
t (∂ht/∂λ)} with k = 1, . . . , M . The

above equation plays the same role as Taylor expansion in Li (1992) and Li & Mak (1994).
Hence, as in Li & Li (2005), by the approximations in (3) and (4), the central limit theorem and
the Mann–Wald device, we can obtain that

√
nρ̂ → N (0, V2)

in distribution as n → ∞, where

V2 = I − 1

σ 4|u|
H ′�−1

2

(
σ 2

|u|�2 − 0·25�1

)
�−1

2 H + µ

σ 4|u|

5.

Note that µ = 0 when the innovation ut is symmetrically distributed.
Based on the asymptotic normality of R̂ and ρ̂, we can construct two portmanteau tests,

Qr (M) = n R̂′V −1
1 R̂, Qa(M) = nρ̂ ′V −1

2 ρ̂.
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It can be shown that, if the ARFIMA–GARCH model in the previous section is correctly specified,
the quantities Qr (M) and Qa(M) will be asymptotically distributed as χ2(M). In practice, we
can obtain the exact values of µ, σ 2, σ 2|u| and f (0) in the definitions of matrices V1 and V2 if
the distribution of ut is known. Otherwise, we can use n−1 ∑

ε̂t/ĥ1/2
t to replace µ, n−1 ∑

ε̂2
t /ĥt

to replace σ 2 and n−1 ∑
(|ε̂t |/ĥ1/2

t − 1)2 to replace σ 2|u|. For f (0), the sequence {ε̂t/ĥ1/2
t } is first

supposed to be independently and identically distributed and then some nonparametric method,
such as kernel estimation, can be applied to fit the density function f̂ (x). Finally, we can use f̂ (0)
to replace f (0). The entries of X , Z , H , Z∗, 
ε, 
2 and 
3 can be replaced by the corresponding
sample averages, as in Li & Mak (1994). Tse & Zuo (1997) considered the optimal choice of M
for portmanteau tests proposed in Li & Mak (1994).

The tests Qr (M) and Qa(M) should be useful in checking whether or not the fitted ARFIMA–
GARCH models in § 2 are adequate, and the simulation results in § 4 give further support to this
fact. It can be seen that Qr (M) is not sensitive to the misspecification in conditional variances
while Qa(M) is not sensitive to the misspecification in conditional means. In fact, Wong & Ling
(2005) observed the same phenomenon for the residual autocorrelations and squared residual
autocorrelations, and proposed a combined portmanteau test based on these two types of auto-
correlation. Hence, it is also of interest to construct a combined portmanteau test, based on the
asymptotic joint distribution of residual autocorrelations and absolute residual autocorrelations.
However, this method is more complicated and we leave it for future research.

4. SIMULATION EXPERIMENTS

4·1. Performance of the least absolute deviation estimation

When the innovation ut is normally distributed, Ling & Li (1997) considered the maximum
likelihood estimator of models (1) and (2),

λ̂MLE = arg min
λ∈


n∑
t=1

{
ε2

t (λ)

ht (λ)
+ log ht (λ)

}
,

and its asymptotic normality was also obtained. This estimator can still be used when the normality
of ut is violated, and is the so-called Gaussian quasi-maximum likelihood estimator. Note that
the proof in Ling & Li (1997) only needs the conditions E(ε4

t ) < ∞ and E(u4
t ) < ∞, and hence

λ̂MLE is still asymptotically normal under these conditions.
The first experiment compares the least absolute deviation estimator λ̂n in § 2 with the Gaussian

quasi-maximum likelihood estimator λ̂MLE and the following ARFIMA(0,d,0)–GARCH(1,1) process
was involved:

(1 − B)dYt = εt , εt = ut h
1/2
t , ht = 0·5 + 0·2ε2

t−1 + 0·7ht−1, (5)

where ut followed a standard normal distribution or a Student’s t-distribution with 3 or 5 degrees
of freedom. These three distributions were always employed for the innovation ut except in
the next experiment, and were first standardized to have mean 0 and variance 1. The memory
parameter d was chosen to be −0·3 or 0·3 for the stationary case and d = 0·7 or 1·3 for the
nonstationary case. For each combination of innovation distributions and memory parameters,
we considered the sample size n = 600 and drew 400 independent replications. The subroutine
DBCPOL in the IMSL library was employed to perform an exhaustive search for λ̂MLE and λ̂n at
the same time. We set initially the value of the parameter d to zero and the parameters in the
conditional variance, α0, α1 and β1, to 0·1. The subroutine DBCPOL was also used for optimization
in the following experiments and the real example. Since the values of parameters α0 and α1
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Fig. 1. Boxplots for the average absolute errors of λ̂n and λ̂MLE; for (a) a stationary case with d = −0·3, (b) a
nonstationary case with d = 0·7. Labels t(3), t(5) or ‘nor’ indicate that the innovation ut has the t3, t5 or N (0, 1)

distribution, respectively.

fitted by the least absolute deviation approach are different from 0·5 and 0·2 by a common factor
as in Peng & Yao (2003), we define the average absolute error as

1
3 (|α̂1/α̂0 − 0·4| + |β̂1 − 0·2| + |d̂ − d|),

which can be used to compare the performance of λ̂n with λ̂MLE.
Figure 1 displays the boxplots for the average absolute error for one stationary case, d = −0·3,

and one nonstationary case, d = 0·7. The results for d = 0·3 and d = 1·3 were very similar to
those in Fig. 1(a) and (b), respectively. There are a few very large values of average absolute
errors for λ̂MLE when the errors are distributed as t3. For convenience of presentation, we have
removed these outliers from the figures. The least absolute deviation estimator λ̂n is much superior
when ut ∼ t3. This may reflect the fact that the heavier the tails, the slower the convergence rate
of the Gaussian quasi-maximum likelihood estimator; see Hall & Yao (2003). Note that the t5
distribution has a finite fourth moment so that λ̂MLE will enjoy the standard n1/2 convergence
rate. For this case, λ̂n also performs better. When the error is normally distributed, of course,
λ̂MLE is the better choice, but the performance of λ̂n is comparable.

As suggested by a referee, we also conduct an experiment to compare λ̂n with two two-stage
estimators. For simplicity, an AR(1)–ARCH(1) model is employed to generate the realizations:

Yt = 0·3Yt−1 + εt , εt = ut
(
0·5 + 0·2ε2

t−1

)1/2.

The innovation sequence {ut } come from a mixed t-distribution, taking the values of |t f1 | and
−|t f2 | respectively with probability 0·5. Four different distributions of ut are considered in this
experiment with ( f1, f2) respectively equal to (3, 3), (5, 5), (3, 5) and (9, 5). Note that the median
of ut is zero, but when f1 � f2, ut is asymmetrically distributed with E(ut ) � 0. The following
two-stage estimation method, 2LAD, was employed:

(α̂0, α̂1)′ = arg min
n∑

t=1

|log ε2
t (φ̂) − log ht (φ̂, α0, α1)|,
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Fig. 2. Boxplots for average absolute errors of the four types of estimator with symmetric innovation
ut for (a) ( f1, f2) = (3, 3) and (b) ( f1, f2) = (5, 5), for methods LAD, MLE, 2LS and 2LAD.

where φ̂ is the median of the sequence {Yt/Yt−1, t = 2, . . . , n}. For comparison, another two-
stage procedure, 2LS, was also considered:

φ̃ = arg min
n∑

t=1

ε2
t (φ), (α̃0, α̃1)′ = arg min

n∑
t=1

|log ε2
t (φ̃) − log ht (φ̃, α0, α1)|,

where εt (φ) = Yt − φYt−1 − µ since µ = Eut may not be equal to zero. The same adjustment is
applied to λ̂MLE. The boxplots for the average absolute errors of the above four different methods
are presented in Fig. 2 for the cases of symmetric innovation distributions corresponding to
( f1, f2) = (3, 3) and ( f1, f2) = (5, 5). For the cases of asymmetric innovation distributions,
the results for ( f1, f2) = (3, 5) and ( f1, f2) = (9, 5) were very similar to Fig. 2(a) and (b),
respectively. The results show that the least absolute deviation estimator λ̂n outperforms the other
three. This conclusion is consistent with the argument in § 2.

The final experiment examines the performance of λ̂n in finite-sample cases. The generating
process (5) with d = 0·3 was employed again. Note that the series {Yt } has the long-memory
property. The sample size is set to be 300 or 400, and we drew 500 independent replications
for each combination of the sample sizes and the innovation distributions. Table 1 presents the
estimated biases, the empirical root mean squared errors and the root mean asymptotic variance
of the estimators. The biases are all small and the root mean asymptotic variances are very similar
to the empirical root mean squared errors. All biases, empirical root mean squared errors and root
mean asymptotic variances change little when the series is centred by the sample mean and they
decrease as the sample size increases. The empirical root mean squared errors and the root mean
asymptotic variances become very similar when the sample size is larger, n = 400. We also tried
different memory parameters for the generating process (5) and found very similar results.

4·2. Performance of the portmanteau tests

In this section, we check the empirical sizes and powers of the two portmanteau tests ob-
tained in § 3. Three different generating processes were involved: the ARFIMA(0,d,0)–GARCH(1,1)
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Table 1. Simulation study. Estimated bias, square root of the mean squared error, RMSE, and
square root of the mean asymptotic variance, RMAV, for the ARFIMA (0, 0·3, 0)–GARCH (1, 1)

model, based on 500 replications; all figures multiplied by 10

Known mean Unknown mean
n d̂ α̂0 α̂1 β̂1 d̂ α̂0 α̂1 β̂1

Innovation distribution t(3)
300 BIAS 0·023 0·695 0·072 −0·723 −0·024 0·734 0·063 −0·751

RMSE 0·457 1·938 0·565 2·068 0·499 1·964 0·568 2·099
RMAV 0·450 2·257 0·540 2·355 0·462 2·309 0·538 2·386

400 BIAS –0·009 0·516 0·046 −0·478 −0·045 0·542 0·045 −0·490
RMSE 0·387 1·565 0·422 1·590 0·423 1·613 0·425 1·614
RMAV 0·389 1·537 0·455 1·603 0·398 1·550 0·455 1·611

Innovation distribution t(5)
300 BIAS −0·045 0·747 0·015 −0·406 −0·115 0·743 0·009 −0·391

RMSE 0·559 2·063 0·479 1·447 0·589 2·040 0·476 1·414
RMAV 0·520 2·114 0·486 1·448 0·532 2·147 0·485 1·467

400 BIAS −0·025 0·626 0·001 −0·279 −0·069 0·629 −0·005 −0·276
RMSE 0·469 1·765 0·402 1·163 0·479 1·759 0·394 1·154
RMAV 0·452 1·725 0·416 1·169 0·461 1·733 0·415 1·176

Innovation distribution N (0, 1)
300 BIAS –0·035 0·919 0·006 −0·309 −0·129 0·918 0·000 −0·305

RMSE 0·606 2·317 0·514 1·227 0·622 2·332 0·511 1·233
RMAV 0·593 2·616 0·472 1·339 0·605 3·091 0·471 1·562

400 BIAS 0·052 0·720 0·004 −0·260 −0·141 0·706 −0·005 −0·246
RMSE 0·542 1·931 0·423 1·023 0·586 1·922 0·423 1·018
RMAV 0·513 1·984 0·409 1·055 0·522 1·977 0·407 1·052

process,

(1 − B)dYt = εt , εt = ut h
1/2
t , ht = 0·3 + 0·3ε2

t−1 + 0·3ht−1,

was used to check the empirical sizes; the ARFIMA(0,d,0)–GARCH(3,1) process,

(1 − B)dYt = εt , εt = ut h
1/2
t , ht = 0·3 + 0·3ε2

t−1 + 0·3ε2
t−3 + 0·3ht−1,

was used to check the sensitivity for the misspecification of conditional variance, and we call this
Type I power; and the ARFIMA(2,d,0)–GARCH(1,1) process,

(1 − 0·2B2)(1 − B)dYt = εt , εt = ut h
1/2
t , ht = 0·3 + 0·3ε2

t−1 + 0·3ht−1,

was used to check the sensitivity for the misspecification of conditional mean, and we call this Type
II power. The memory parameter d was taken to be −0·3, 0·3 or 0·7, resulting in series with the
short-memory, long-memory or nonstationary property, respectively. Two different sample sizes,
n = 400 and n = 600, were considered and there were 1000 replications for each combination
of the memory parameters d, sample sizes n, and the innovation distributions. We estimated all
the simulated data with the ARFIMA(0, d, 0)–GARCH(1,1) model by the least absolute deviation
approach and calculated the values of Qa(M) and Qr (M) with M = 6.

Table 2 displays the proportions of rejections based on the upper 5th percentile of the χ2
6

distribution. All the sizes of Qa(6) and Qr (6) in Table 2 are very close to 0·05 especially for the
cases with n = 600. Type I powers of Qa(6) and Type II powers of Qr (6) are all greater than 0·5
when the sample size n is as large as 600. This means that the tests Qa(M) and Qr (M) can be
used to check respectively whether or not the conditional variance part or the conditional mean
part of the fitted model is misspecified. Type I powers of Qr (6) and Type II powers of Qa(6)
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Table 2. The empirical size and power of Qa(6) and Qr (6), based on 1000 replications

Size Type I Power Type II Power

Innovation distribution n Qa(6) Qr (6) Qa(6) Qr (6) Qa(6) Qr (6)

Differencing parameter d = −0·3
t3 400 0·043 0·043 0·328 0·078 0·039 0·374

600 0·046 0·044 0·500 0·088 0·037 0·620
t5 400 0·055 0·063 0·733 0·099 0·052 0·620

600 0·053 0·047 0·901 0·104 0·045 0·801
N (0, 1) 400 0·058 0·047 0·919 0·105 0·048 0·691

600 0·045 0·053 0·984 0·099 0·038 0·990

Differencing parameter d = 0·3
t3 400 0·051 0·038 0·338 0·087 0·039 0·388

600 0·053 0·043 0·462 0·086 0·034 0·589
t5 400 0·061 0·043 0·747 0·108 0·047 0·621

600 0·051 0·052 0·860 0·094 0·039 0·824
N (0, 1) 400 0·055 0·056 0·913 0·104 0·063 0·698

600 0·048 0·053 0·981 0·092 0·049 0·886

Differencing parameter d = 0·7
t3 400 0·052 0·048 0·319 0·082 0·038 0·346

600 0·049 0·043 0·475 0·073 0·041 0·588
t5 400 0·052 0·049 0·742 0·105 0·050 0·599

600 0·048 0·048 0·900 0·092 0·038 0·815
N (0, 1) 400 0·047 0·043 0·923 0·124 0·050 0·701

600 0·051 0·043 0·987 0·114 0·053 0·875

are no more than 0·15. Hence, only the combination of Qa(M) and Qr (M) forms a complete
diagnostic tool for checking whether or not the fitted ARFIMA–GARCH model is adequate.

5. AN ILLUSTRATIVE EXAMPLE

The dataset contains the absolute returns, as a percentage, of the Dow Jones Industrial Average
Index daily closing price. There are 2519 observations from January 3, 1995 to December 31,
2004. The mean and standard deviation of the absolute returns are 0·352 and 0·335, respectively.
Denote the centralized absolute returns by {yt }. The conditional heteroscedasticity in the time
series is obvious from Fig. 3(a). Figure 3(b) shows that the sample autocorrelations of the absolute
returns are relatively small in magnitude, but decay very slowly. They appear to be significant
at the 5% level even after 200 lags, suggesting the presence of long memory (Tsay, 2002).
The ARFIMA–GARCH models were considered for the observed series {yt } and the least absolute
deviation method was used to find the memory parameter as well as others.

We considered two different models for the conditional mean, ARFIMA(4, d, 0) and
ARFIMA(2, d, 1), and two different models for the conditional variance, ARCH(4) and GARCH(1, 1),
leading to four models in total: Model 1 combines an ARFIMA(4, d, 0) model with ARCH(4) er-
ror; Model 2 combines an ARFIMA(4, d, 0) model with GARCH(1, 1) error; Model 3 combines an
ARFIMA(2, d, 1) model with ARCH(4) error; and Model 4 combines an ARFIMA(2, d, 1) model with
GARCH(1, 1) error. The methodology in § 2 and § 3 was applied to these four models. We set M to
be 15 and the values of µ, σ 2, σ 2|u| and f (0) were estimated with the methods mentioned in § 3.
The bandwidth was set to be 0·05. The results are summarized in Table 3.

Only Model 4 is not rejected by either of the test statistics Qa(15) and Qr (15) at significance
level 0·05 and hence is adequate; note that χ2

15,0·95 = 25·00. Consistent with the simulation results
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Fig. 3. Daily closing Dow Jones Industrial Average Index, 1995–2004. (a) Time plot of absolute returns,
(b) Empirical autocorrelation function of absolute returns.

Table 3. Modelling results for the absolute returns of Dow Jones Industrial Average Index daily
closing price, 1995–2004

Model 1 Model 2 Model 3 Model 4
Parameter λ̂n SD λ̂n SD λ̂n SD λ̂n SD
d 0·4349 5·672 0·4651 5·541 0·6594 12·40 0·7117 13·50
φ1 −0·4573 6·818 −0·4786 6·570 0·0784 7·118 0·0618 7·815
φ2 −0·2611 6·526 −0·2827 6·393 0·0170 4·334 0·0193 3·912
φ3 −0·1794 5·543 −0·2052 5·591
φ4 −0·0707 4·280 −0·1004 4·499
ψ1 −0·7699 7·925 −0·8004 7·673
α0 0·0242 1·982 0·0009 0·242 0·0229 1·925 0·0008 0·223
α1 0·0973 21·50 0·0465 7·264 0·1011 21·60 0·0469 7·201
α2 0·1045 22·00 0·1086 22·30
α3 0·0746 19·50 0·0815 20·10
α4 0·0876 20·60 0·0923 20·90
β1 0·9084 12·70 0·9100 12·20

Qr (15) 30·43 33·12 17·69 15·96
Qa(15) 109·40 10·79 97·83 10·88

SD, estimated asymptotic standard deviation multiplied by 103.
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Fig. 4. Dow Jones example. Sample autocorrelation functions of residuals and absolute residuals obtained from fitting
Models 1–4. The dotted lines show ±1·96Ai , the 95% asymptotic confidence intervals, where Ai , i = 1, . . . , 15, is

the asymptotic standard error for lag i .

in § 5, at significance level 0·05, the portmanteau test Qa(15) rejects Models 1 and 3, suggesting
that the conditional variances are misspecified, while Qr (15) rejects Models 1 and 2, suggesting
that the conditional means are misspecified. Figure 4 presents the sample autocorrelation functions
of residuals and absolute residuals coming from the above four fitted models, along with 95%
confidence bands. These plots are consistent with the above findings. We tried several other values
of M and similar results were obtained.

The value d̂ = 0·7117 can be considered as a reliable estimate of the true memory parameter
since Model 4 is the selected model, indicating that this sequence is probably nonstationary.
Note that all the estimated memory parameters are significantly different, with 95% confidence
intervals that do not even overlap. Models 1 and 2 even fail to identify that the sequence is
nonstationary. Hence it is important to specify the conditional mean and variance correctly when
the least absolute deviation method is employed to estimate ARFIMA–GARCH models.
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APPENDIX

Technical details

Some properties of the derivative functions of εt (λ) and ht (λ). Under Assumptions 1 and 2, the functions,
εt (λ) and ht (λ), defined in § 2 are both meaningful and their first-order derivatives are as follows:

∂εt (λ)

∂φ j
= −φ−1(B)εt− j (λ),

∂εt (λ)

∂ψ j
= −ψ−1(B)εt− j (λ),

∂εt (λ)

∂d
= −

∞∑
k=1

1

k
εt−k(λ),

∂ht (λ)

∂δ
= ε̃t +

s∑
i=1

βi
∂ht−i (λ)

∂δ
,
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∂ht (λ)

∂γ
= 2

r∑
i=1

αiεt−i (λ)
∂εt−i (λ)

∂γ
+

s∑
i=1

βi
∂ht−i (λ)

∂γ
,

where ε̃t = (1, ε2
t−1(λ), . . . , ε2

t−r (λ), ht−1(λ), . . . , ht−s(λ))′; see Ling & Li (1997).
If the condition |d| < 0·5 is also assumed, the processes {Yt } and {εt } generated by models (1) and (2)

are strictly stationary and have a finite second moment. Let 
∗ = 
 ∩ {|d| < 0·5}, which is still compact.
Then we can show that

E

{
sup
λ∈
∗

∥∥∥∥∂εt (λ)

∂γ

∥∥∥∥2
}

< ∞, E

{
sup
λ∈
∗

∥∥∥∥ 1

√{ht (λ)}
∂εt (λ)

∂γ

∥∥∥∥2
}

< ∞,

E

{
sup
λ∈
∗

∥∥∥∥∂2εt (λ)

∂γ ∂γ ′

∥∥∥∥2
}

< ∞, E

{
sup
λ∈
∗

∥∥∥∥ 1

√{ht (λ)}
∂ht (λ)

∂λ

∥∥∥∥2
}

< ∞,

E

{
sup
λ∈
∗

∥∥∥∥ 1

ht (λ)

∂ht (λ)

∂λ

∥∥∥∥2
}

< ∞, E

{
sup
λ∈
∗

∥∥∥∥ 1

ht (λ)

∂2ht (λ)

∂λ∂λ′

∥∥∥∥2
}

< ∞,

where ‖ · ‖ is the Euclidean norm. The above inequalities are necessary for the derivations in § 3 and the
proof of Theorem 1.

Proof of Theorem 1. For any v = (v′
1, v

′
2)′ ∈ Rl , where v1 ∈ R p+q+1, v2 ∈ Rr+s+1 and v � 0, let

Sn(v) = Ln

(
λ0 + n−1/2v

) − Ln(λ0)

=
n∑

t=1

[
1

√{ht (λ0)}
{∣∣εt

(
λ0 + n−1/2v

)∣∣ − |εt (λ0)|}]

+
n∑

t=1

[{
1

√
{

ht

(
λ0 + n−1/2v

)} − 1

√{ht (λ0)}

}{|εt

(
λ0 + n−1/2v

)| − |εt (λ0)|}]

+
n∑

t=1

[ |εt (λ0)|
√

{
ht

(
λ0 + n−1/2v

)} + 1

2
log ht

(
λ0 + n−1/2v

)
− |εt (λ0)|

√{ht (λ0)} − 1

2
log ht (λ0)

]
= S1n(v) + S2n(v) + S3n(v),

S∗
1n(v) =

n∑
t=1

[
1

√{ht (λ0)}
{∣∣∣∣εt (λ0) + n−1/2v1

∂εt (λ0)

∂γ

∣∣∣∣ − |εt (λ0)|
}]

.

It holds that, for x � 0,

|x + y| − |x | = y sgn(x) + 2
∫ −y

0
{I (x � s) − I (x � 0)}ds,

where the function sgn(x) is equal to 1 for x > 0, 0 for x = 0 and −1 for x < 0; see Knight (1998). By a
method similar to that in Peng & Yao (2003) together with the above equation, we can show that

S∗
1n(v) = n−1/2v′

1

n∑
t=1

sgn(ut )h
−1/2
t

∂εt

∂γ
+ f (0)v′

1
εv1 + op(1).
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As in Davis & Dunsmuir (1997), by the inequalities at the beginning of this Appendix, we can show that

S1n(v) → n−1/2v′
1

n∑
t=1

sgn(ut )h
−1/2
t

∂εt

∂γ
+ f (0)v′

1
εv1

in distribution as n → ∞. Hence, S2n(v) = op(1).
Note that S3n(v) is a smooth function so that Taylor expansion can be used. After some algebra, the

inequalities at the beginning of this Appendix ensure that

S3n(v) = −0·5 n−1/2v′
n∑

t=1

(|ut | − 1)h−1
t

∂ht

∂λ
+ 0·5 v′
2v + op(1).

Let

sn = v′
n∑

t=1

{
sgn(ut )h

−1/2
t

∂εt

∂λ
− 0·5(|ut | − 1)h−1

t

∂ht

∂λ

}
.

Note that, under Assumption 3, sn is a martingale and (1/n)Es2
n = v′�1v > 0, where the matrix �1 =


1 + σ 2
|u|
2 − µ
3 is defined in § 2. By the strict stationarity and ergodicity of {Yt } and {εt }, it holds that{

(1/n)Es2
n

}−1{
(1/n)E

(
s2

n

∣∣Fn−1

)} → 1,

almost surely. Using the central limit theorem of Stout (1974), we can show that n−1/2sn→v′W in
distribution, where W is a multivariate normal vector with mean 0 and covariance matrix �1. Hence,

Sn(v) → v′W + v′�2v

in distribution, where �2 = f (0)
1 + 0·5
2 is defined in § 2. Following Lemma 2·2 and Remark 1 of
Davis et al. (1992) we complete the proof of Theorem 1. �
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