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SUMMARY

This paper derives the asymptotic null distribution of a quasilikelihood ratio test statistic for an autore-
gressive moving average model against its threshold extension. The null hypothesis is that of no threshold,
and the error term could be dependent. The asymptotic distribution is rather complicated, and all exist-
ing methods for approximating a distribution in the related literature fail to work. Hence, a novel boot-
strap approximation based on stochastic permutation is proposed in this paper. Besides being robust to
the assumptions on the error term, our method enjoys more flexibility and needs less computation when
compared with methods currently used in the literature. Monte Carlo experiments give further support to
the new approach, and an illustration is reported.

Some key words: Autoregressive moving average model; Bootstrap method; Quasilikelihood ratio test; Threshold
model.

1. INTRODUCTION

Threshold models were first proposed by Tong & Lim (1980), and have since become a standard class
of nonlinear time series models; see Tong (1990). Due to the complexity of nonlinear models, there arises
the important problem of testing whether a threshold model can provide a better fit to the data than a
linear one. This problem has attracted a lot of attention, e.g., a simple portmanteau test was considered in
Petruccelli & Davies (1986) and Tsay (1998); the quasilikelihood ratio test in Chan (1990), Chan & Tong
(1990) and Ling & Tong (2005); and the Wald test in Hansen (1996) and Caner & Hansen (2001). All the
existing references in this literature only consider either a pure autoregressive or a pure moving average
model under the null hypothesis. However, it is well known that the autoregressive moving average model
is superior to the pure autoregressive model from the viewpoint of parsimony, and superior to the pure
moving average model from the viewpoint of interpretation. We propose a quasilikelihood ratio test for
the autoregressive moving average model against its threshold extension.

In these tests, the threshold parameter is usually assumed to be unknown under the alternative hypothe-
sis, and is absent under the null hypothesis. As a result, the null distributions of likelihood-based tests take
on a very complicated form even for some simple cases, see Davies (1977, 1987). Methods based on the
Poisson clumping heuristic or a stationary Ornstein–Uhlenbeck process had been developed to approxi-
mate the tail of the null distributions, and some commonly used critical values were tabulated for use in
applications, see Chan & Tong (1990) and Chan (1991). These can be considered as trade-offs between
flexibility and computation time. Contemporary computing power gives us a chance to provide a more flex-
ible solution. Bootstrap approximations are generally powerful, and can maintain significance levels at the
same time. Ling & Tong (2005) suggested a simulation method to calculate the p-values, of the quasilikeli-
hood ratio test for the threshold moving average model, which is actually a parametric bootstrap method. A
huge amount of computation may be involved in this approach, when a complicated model is considered,
due to the optimization step for each bootstrapped sample. The classical block-wise bootstrap method
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(Chan et al., 2009) or the wild bootstrap method (Gonzalo & Wolf, 2005) encounter the same problem.
Hansen (1996) considered a bootstrap method based on stochastic permutation, to approximate the
p-values of a Wald test. There is no optimization involved in the bootstrapped samples in this method,
and this is important especially for our cases since a large amount of computation is required for the opti-
mization of threshold autoregressive moving average models. However, the test statistic of this method
is required to have a quadratic form, see also Zhu & Ng (2003). In this paper, we derive an asymptoti-
cally equivalent quadratic form for the quasilikelihood ratio test statistic, and then propose a stochastic
permutation-based bootstrap method to approximate the null distribution.

It is usually necessary to assume that the error term is identically and independently distributed in
tests for the threshold structure, see the simulation experiments in Wong & Li (1997) and Li & Li (2008).
However this condition is too strong in practice. For example, many time series in finance and economics
may have a time varying conditional variance (Engle, 1982; Bollerslev, 1986). In order to handle this
case, a generalized autoregressive conditional heteroscedastic structure is usually assumed for the errors
(Wong & Li, 1997; Li & Li, 2008), and these extra parameters may burden the testing procedure. This
paper derives the null distribution of the test for threshold autoregressive moving average models with-
out assuming identically and independently distributed errors. The proposed bootstrap method is robust
with respect to this assumption by persevering the unknown structure of errors in the process of approxi-
mating the null distribution. Hence, the possible dependence structure in the errors becomes irrelevant in
establishing the p-value of the test statistic.

2. QUASILIKELIHOOD RATIO TEST

Let {yt } be a strictly stationary and ergodic time series generated by the ARMA(p, q) model,

yt =μ+
p∑

i=1

φ1i yt−i +
q∑

j=1

φ2 j et− j + et , (1)

where p and q are known positive integers, and {et } is an uncorrelated error sequence with zero mean. It
is of interest to check whether or not the model (1) can provide an adequate fit for the real data with a
threshold model as the alternative, i.e. whether the sequence {yt } is generated by

yt =μ+
p∑

i=1

φ1i yt−i +
q∑

j=1

φ2 j et− j +
⎛⎝μ1 +

p∑
i=1

ψ1i yt−i +
q∑

j=1

ψ2 j et− j

⎞⎠ I (yt−d � r)+ et , (2)

where the delay parameter d is a known positive integer, I (·) is the indicator function, and r ∈ R is the
unknown threshold parameter.

Let φ = (μ, φ11, . . . , φ1p, φ21, . . . , φ2q)
′, ψ = (μ1, ψ11, . . . , ψ1p, ψ21, . . . , ψ2q)

′, and λ= (φ′, ψ ′)′,
where λ is the parameter vector of model (2). Denote the parameter space by �=�φ ×�ψ , where �φ

and �ψ are compact subsets of R
p+q+1. Suppose the true parameter vector λ0 = (φ′

0, ψ
′
0)

′ is an interior
point of the parameter space �.

Given observations y1, . . . , yn , we consider the following hypotheses,

H0 :ψ0 = 0, H1 :ψ0 |= 0 for some r ∈ R.

By temporarily assuming normality for et , we have the loglikelihood functions, conditional on
y0, y−1, . . . , respectively, under H0 and H1 as follows,

L0n(φ)=
n∑

t=1

{et (φ)}2, L1n(λ, r)=
n∑

t=1

{et (λ, r)}2, (3)
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where et (φ)= et (λ,−∞) and et (λ, r) is defined based on the iterative equation (2). The likelihood func-
tions (3) are dependent on past observations infinitely far away, and then initial values are needed. For
simplicity, we assume that yi = 0, i � 0 and these functions evaluated at these initial values can be denoted,
respectively, by ẽt (φ), ẽt (λ, r), L̃0n(φ) and L̃1n(λ, r).

For a given r , let φ̃n = argminφ∈�φ L̃0n(φ) and λ̃n(r)= argminλ∈� L̃1n(λ, r). The quasilikelihood

ratio test statistic is then L̃ Rn(r)= L̃0n(φ̃n)− L̃1n(λ̃n(r), r). Since r is unknown and the quantity
supr∈R

L̃ Rn(r)will diverge to infinity in probability as n → ∞ (Andrews, 1993), the quasilikelihood ratio
test statistic in this paper is defined as

L Rn = 1

σ̃ 2
e

sup
r∈[a,b]

L̃ Rn(r),

where σ̃ 2
e = L̃0n(φ̃n)/n, and [a, b] is a predetermined interval.

Denote σ 2
e = E(e2

t ),

Krs = E

{
e2

t

∂et (λ0, r)

∂λ

∂et (λ0, s)

∂λ′

}
, �r =

(
	 	1r

	′
1r 	rr

)
= E

{
∂et (λ0, r)

∂λ

∂et (λ0, r)

∂λ′

}
,

and �1r =�−1
r − diag(	−1, 0)= (−	′

1r	
−1, I)′(	rr −	′

1r	
−1	1r )

−1(−	′
1r	

−1, I), where 	, 	1r ,
	rr , 0 and I are (p + q + 1)× (p + q + 1) matrices, 0 is a zero matrix and I is an identity matrix. Let
{G2(p+q+1)(r), r ∈ R} be a 2(p + q + 1)-dimensional vector Gaussian process with zero mean and covari-
ance kernel Krs ; almost all its paths are continuous. To investigate the asymptotic power of L Rn , we also
consider the following local alternatives, H1n :ψ0 = n−1/2h for a constant vector h ∈ R

p+q+1 and r = r0 ∈
R is a fixed value.

THEOREM 1. Under H0, if Assumptions A1–A4 in the Appendix hold and n → ∞, then in distribution,

L Rn −→ 1

σ 2
e

sup
r∈[a,b]

{G ′
2(p+q+1)(r)�1r G2(p+q+1)(r)}.

THEOREM 2. Under H1n, if Assumptions A1–A5 in the Appendix hold and n → ∞, then in distribution,

L Rn −→ 1

σ 2
e

sup
r∈[a,b]

[{G2(p+q+1)(r)+ μ(r)}′�1r {G2(p+q+1)(r)+ μ(r)}],

where μ(r)= Krroh.

The proofs of the above theorems are similar to those of Theorems 2.2 and 3.2 in Li & Li (2008), and
are omitted.

The values of the matrix Krs depend on the possible dependence structure of et , and this is why the
existing approximation methods fail to work when the independence assumption is broken. It is therefore
necessary to develop a new approximation method, and hence the bootstrap method in §3 is proposed.

3. BOOTSTRAP APPROXIMATION BY STOCHASTIC PERMUTATION

Let Tn(r)= n−1/2
∑n

t=1 et∂et (λ0, r)/∂λ. Under H0 and Assumptions A1–A3 in the Appendix, we can
show that

sup
r∈[a,b]

|L̃ Rn(r)− T ′
n(r)�1r Tn(r)| = op(1); (4)

see also the proof of Lemma 2.1 in Ling & Tong (2005). The quantity T ′
n(r)�1r Tn(r) is a quadratic form,

so we can consider a bootstrap method to approximate it by permutating stochastically the summand in
Tn(r). The uniform expansion in (4) makes sure that we can equivalently handle T ′

n(r)�1r Tn(r), so we
can avoid time-consuming optimization in searching for the quasimaximum likelihood estimates for each
bootstrapped sample in the traditional methods.

We first consider removing any possible threshold structure in a candidate time series {yt } since the
uniform expansion (4) and the null distribution both depend on H0. Let r̃n = argminr∈[a,b] L̃1n{λ̃n(r), r},
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and λ̃n = (φ̂′
n, ψ̂

′
n)

′ = λ̃n(r̃n), where φ̂′
n = (μ̂, φ̂11, . . . , φ̂2q)

′ and λ̃n(r) is defined in §2. Let ẽt = ẽt (λ̃n, r̃n)

and ỹt = μ̂+ ∑p
i=1 φ̂1i ỹt−i + ∑q

j=1 φ̂2 j ẽt− j + ẽt , where ẽt = 0 for t � 0. Note that {ỹt } is a time series

generated by a linear autoregressive moving average model with parameters φ̂n and innovations {ẽt }.
Define the vector functions

∂ ẽt (r)

∂φ
= −z̃t −

q∑
j=1

φ̂2 j
∂ ẽt− j

∂φ
,

∂ ẽt (r)

∂ψ
= −z̃t I (ỹt−d � r)−

q∑
j=1

φ̂2 j
∂ ẽt− j (r)

∂ψ
,

and ∂ ẽt (r)/∂λ= (∂ ẽt (r)/∂φ′, ∂ ẽt (r)/∂ψ ′)′, where z̃t = (1, ỹt−1, . . . , ỹt−p, ẽt−1, . . . , ẽt−q)
′ and

∂ ẽt (r)/∂λ= 0 for t � 0. Let

�̃r =
(
	̃ 	̃1r

	̃′
1r 	̃rr

)
= 1

n

n∑
t=1

∂ ẽt (r)

∂λ

∂ ẽt (r)

∂λ′ , �̃1r = �̃−1
r − diag

{
	̃−1, 0

}
.

Suppose {ε∗
t } is an extra identically and independently distributed sequence with zero mean, variance

unity and finite fourth moment. Let Tn(ε
∗, r)= n−1/2

∑n
t=1 ε

∗
t ẽt∂ ẽt (r)/∂λ, and

L Rn(ε
∗)= 1

σ̂ 2
e

sup
r∈[a,b]

T ′
n(ε

∗, r)�̃1r Tn(ε
∗, r),

where σ̂ 2
e = L̃1n(λ̃n, r̃n)/n.

THEOREM 3. Under H0 or H1, if Assumptions A1–A4 in the Appendix hold, then, conditional on
y1, . . . , yn,

L Rn(ε
∗)−→L 1

σ 2
e

sup
r∈[a,b]

{G ′
2(p+q+1)(r)�1r G2(p+q+1)(r)}

in probability, where → L means the convergence in distribution, and {G2(p+q+1)(r), r ∈ R} and �1r are
defined as in Theorem 1.

The proof of Theorem 3 is in the Appendix. The conditional asymptotic distribution in Theorem 3 is
the same as the unconditional one in Theorem 1, the bootstrap method can be used to approximate the
p-values of L Rn .

Note that T ′
n(ε

∗, r)�̃1r Tn(ε
∗, r) is a stepwise function with possible jumps at ỹ1, . . . , ỹn , so the amount

of computation depends only on the sample size n and the number of bootstrapped samples. This greatly
reduces the computational burden for more sophisticated models in applications. In practice, we need to
know the interval [a, b] before performing the test, and the values of a and b can be set to empirical
quantiles as in Chan (1991).

4. SIMULATION EXPERIMENTS

We conducted two simulation experiments to check the performance of the proposed testing procedure.
In each experiment, the sample size is set to 200, the number of bootstrapped samples is 1000, the number
of replications is 1000, and the significance level is 0·05.

The first experiment is conducted to compare the effectiveness of three different permutating distri-
butions: (i) the Rademacher distribution, which takes values ±1 with probability 0·5, (ii) the uniform
distribution on [−√

3,
√

3] and (iii) the standard normal distribution. The data generating process is

yt = 0·7yt−1 + 0·6et−1 − ψ(0·7yt−1 + 0·6et−1)I (yt−1 � 0)+ et ,

where et = (0·5 + 0·5e2
t−1)

1/2εt , {εt } are identically and independently distributed random variables with
the standard normal distribution, ψ = 0 corresponds to the size and ψ |= 0 corresponds to the power. We
performed the test with p = q = 1, and the parameters μ and μ1 are suppressed to reduce the computation
in searching for the quasimaximum likelihood estimates of the autoregressive moving average model and
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Fig. 1. The rejection rates of our test with different departures of values ofψ from zero. The
horizontal dot-dashed line corresponds to the nominal rate of 0·05. (a) Rademacher (solid),

uniform (dashed), normal (dotted). (b) p = 2 (solid), AIC (dashed).

its threshold extension. The value of a, or b, for the interval [a, b] is set to be the empirical 0·2, or 0·8,
quantile of each replication, and the Newton–Raphson algorithm was employed to perform all the opti-
mizations. Fig. 1(a) presents the rejection rates of our test with different values of ψ . It can be seen that
all sizes are very close to the nominal rate 0·05, and the test using the Rademacher distribution is slightly
more powerful.

The second experiment is considered to assess the performance of the test when an information criterion
is employed to select the orders of autoregressive moving average models. The null distribution of L Rn

heavily depends on the orders, see Chan (1991). However, the bootstrap test is adaptable to the selection
of orders, and is hence supposed to maintain the sizes. We generate the samples in this experiment by

yt = 0·1yt−1 + 0·1yt−2 − ψ(yt−1 + yt−2)I (yt−1 � 0)+ et ,

where et and the interval [a, b] are the same as those in the first experiment. The test was performed with
q = 0, and the parameters μ and μ1 are suppressed again. We consider two methods to select the order p:
(i) the test advocated in this paper with p = 2, and (ii) the test with order 1 � p � 10 selected by the AIC.
Figure 1(b) presents the rejection rates of the test permuted by the Rademacher distribution. It can be seen
that the sizes are both close to 0·05, and the test based on the AIC is less powerful. The results for the tests
permuted by the normal distribution or the uniform distribution are similar, and are omitted to save space.

5. AN EXAMPLE

We consider the centred log-return as a percentage of the monthly exchange rate of Japanese Yen against
USA dollar from January 1972 to December 2003, and denote these observations by y1, . . . , y384. A linear
model is first considered to fit the data. At the 0·05 significance level, the sample autocorrelation function
of {yt } is significant at lags 1 and 11, and the sample partial autocorrelation function is significant at lags
1, 8 and 11. Hence, we first try an ARMA (12,1) model, then remove the most insignificant coefficients one
by one, and finally reach the model

yt = 0·1160·051 yt−11 + 0·3760·047et−1 + et ,

where et has zero mean and variance 1·297, the value of the AIC is 1159·45, and the values 0·051 and 0·047
correspond to the standard errors. The p-values of Ljung–Box test statistics Q(M) at lags M = 6, 12, and
18 are, respectively, 0·64, 0·67 and 0·51. We also tried other ARMA(p, 1) models, however, the p-values
of Q(18) are all less than 0·2 as p< 11.

The fitted sparse ARMA (11,1) should provide a good fit from the viewpoint of linear time series mod-
elling, and we next try its threshold version to {yt } with d = 1. The interval (a, b) is set to be (−1·59, 1·36),
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the empirical 0·1 and 0·9 quantiles of {yt }, and the fitted model is

yt = 0·1580·057 yt−11 + 0·2930·061et−1

− (0·2630·145 yt−11 − 0·3330·096et−1)I (yt−1 � −1·3940·606)+ et ,

where et has zero mean and variance 1·253, and the value of the AIC is 1152·53. The threshold model is
preferred by the AIC although the coefficient −0·263 is insignificant at the 0·05 significance level. We next
employ our test to check whether the linear model can provide a better fit. The number of bootstrapped
samples is set to 10 000, and the Rademacher distribution is employed for the stochastic permutation.
The calculated p-value is 0·017, and hence the fitted threshold model should provide a better fit to {yt }
compared with the linear one.
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APPENDIX

Technical details

In this paper, we assume the error term et = εtσt , where {εt } are identically and independently dis-
tributed random variables with zero mean and variance unity, and σt > 0 is a measurable function with
respect to the information set Ft = σ(εt , εt−1, . . .).

Assumption A1. All roots of the polynomials 1 − φ11x − · · · − φ1px p and 1 + φ21x + · · · + φ2q xq are
outside the unit circle, and these two polynomials are coprime. The polynomials 1 − ψ11x − · · · − ψ1px p

and 1 + ψ21x + · · · + ψ2q xq are also coprime. It holds that
∑q

i=1 |φ2i |< 1 and
∑q

i=1 |φ2i + ψ2i |< 1.

Assumption A2. The random variable εt has a continuous and positive density function f (·) on R with
E(ε4

t ) <∞ and supx∈R
x4 f (x) <∞.

Assumption A3. The stochastic process {σ 2
t } is strictly stationary and ergodic with E(σ 4

t ) <∞, and is
bounded away from zero with probability one, i.e., there exists an η > 0 such that pr(σt >η)= 1.

Assumption A4. The following inequality holds

E

{
e4

s

l∏
i=1

I (r1 < yti � r)

}
� C(r − r1)

l ,

where l = 1, . . . , 4, and s, t1, t2, t3 and t4 are different integers, r1 < r , with r1, r ∈ [a, b], C is a constant
independent of r and r1.

Assumption A5. Suppose the density f of εt is absolutely continuous with derivative f ′ almost every-
where and

∫ { f ′(x)/ f (x)}2 f (x)dx <∞.

Assumptions A3 and A4 are guaranteed by Lemma A.2 of Li & Li (2008) when {et } is an identically and
independently distributed process or the generalized autoregressive conditional heteroscedastic process
(Bollerslev, 1986).

Proof of Theorem 3. Suppose {yt } is generated by model (2) with the parameter vector λ1 = (φ′
0, ψ

′
0)

′

and the threshold parameter r0. Let λ0 = (φ′
0, 0′)′, where 0 is a (p + q + 1)-dimensional zero vector. By

a method similar to that of §6 in Ling & Tong (2005), we can show that λ̃n = λ1 + op(1) and, if ψ0 |= 0,
r̃n = r0 + op(1). It can be further shown that supr∈[a,b] |�̃r −�r | = op(1) and supr,s∈[a,b] |K̃rs − Krs | =
op(1), where K̃rs = n−1

∑n
t=1 ẽ2

t (∂ ẽt (r)/∂λ)(∂ ẽt (s)/∂λ′). Hence, it is sufficient to show the tightness of
T ∗

n (r)= n−1/2
∑n

t=1 ε
∗
t ẽt∂ ẽt (r)/∂ψ , conditional on y1, . . . , yn or Fn = σ(εn, εn−1, · · · ).
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Denote

�(r)= E

⎧⎨⎩e2
t

∞∑
j=0

ρ j z2
t− j I (yt−d− j � r)

⎫⎬⎭ , �n(r)= 1

n

n∑
t=1

ẽ2
t

∞∑
j=0

ρ j z̃2
t− j I (ỹt−d− j � r),

where zt = (1, yt−1, . . . , yt−p, et−1, . . . , et−q)
′ and ρ is defined as that in Lemma A.1 of Li & Li (2008).

For simplicity and without loss of generality, we will treat the vectors zt and z̃t as scalars. It holds that, for
r1 < r , n−1

∑n
t=1[ẽt {∂ ẽt (r)/∂ψ − ∂ ẽt (r1)/∂ψ}]2 � C1[�n(r)− �n(r1)], where C1 is a constant. Then, by

Burkholder’s inequality (Hall & Heyde, 1980, p. 23), we can show that

E
{|T ∗

n (r)− T ∗
n (r1)|4|Fn

}
� C2 {�n(r)− �n(r1)}2 , (A1)

where C2 is a constant.
Note that T ∗

n (r) is a step-wise function with possible jump points at {ỹ1, . . . , ỹn}. For any interval
[r1, r1 + δ] ⊂ [a, b], suppose that it can be divided into M parts by these jump points, say r1 = a0 < a1 <

· · ·< aM = r1 + δ. For any η > 0, by (A1) and Theorem 10.2 of Billingsley (1999),

pr

{
sup

r1�r�r1+δ
|T ∗

n (r)− T ∗
n (r1)|>η|Fn

}
= pr

{
max

1� j�M
|

j∑
i=1

T ∗
n (ai )− T ∗

n (ai−1)|>η|Fn

}

� C3C2

η4

{
�n(r1 + δ)− �n(r1)

}2
,

(A2)

where C3 is a constant.
Note that �(r) is a continuous function on [a, b], and supr∈[a,b] |�n(r)− �(r)| = op(1). Then, for any

ε > 0, there exist a δ0 > 0 such that supr∈[a,b−δ0] |�n(r + δ0)− �n(r)|< ε holds for almost every sample
y1, . . . , yn generated by (2), limited by convergence in probability. Let δ = max{C3C2ε/η

4, δ0}. By (A2),

pr

{
sup

r1�r�r1+δ
|T ∗

n (r)− T ∗
n (r1)|>η|Fn

}
� δε.

As in Ling & Tong (2005) and Li & Li (2008), we can claim that {T ∗
n (r), r ∈ Rγ } is tight, where Rγ =

[a, b] is equipped with the corresponding product Shorohod topology (Billingsley, 1999). �
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