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1. Introduction

Consider the two-way error component regression model,
Yit =« —I—X{tﬂ + Wi + ne + U,
i=1,2,...,n,t=1,2,...,T, (1)

where X;; is the p-dimensional vector of covariates, « is a scalar, 8
is the vector of coefficients of covariates, and u;; corresponds to the
idiosyncratic error. The individual effect u; and the time effect n;
can capture the heterogeneity of individuals and time points, and
hence model (1) is able to better explain many real data, see Hsiao
(2003), Wooldridge (2002) and Baltagi (2008). It is an important
topic in this literature to test for the existence of the individual
effect and the time effect since their involvements, if unnecessary,
will make the inference complicated and even inefficient when T
or n is fixed.

The Lagrange multiplier (LM) test has been widely discussed
in this literature since Breusch and Pagan (1980). Honda (1985)
derived two uniformly most powerful one-sided tests by modify-
ing the test statistics in Breusch and Pagan (1980). These tests are
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based on the one-way error component models, i.e. the null hy-
potheses correspond to the case without any effect, and the sizes
may be distorted due to the presence of the time (individual) ef-
fect when the individual (time) effect is tested. Bera et al. (2001)
considered LM tests for the individual effect in the presence of se-
rial correlation in the idiosyncratic error, and they are also based
on the one-way error component model. Baltagi et al. (1992) pro-
posed some LM tests based on the more general two-way error
component model (1), and they are robust to the presence of the
redundant effect since its variance is treated as a parameter and
estimated from the data. Such robustness depends on the reliabil-
ity of the estimated variances of the redundant effect and, for this
reason, neither n or T can be too small in Baltagi et al. (1992). Sec-
ondly, the construction of the aforementioned LM tests needs the
assumption of normality and independence among the covariates,
effects and the idiosyncratic error. They may still be valid when
the assumption of normality is relaxed, see Honda (1985) and Balt-
agi et al. (1992). However, when the covariates are correlated with
the individual effect and/or the time effect (Cornwell and Trum-
bull, 1994), the commonly used feasible generalized least squares
(GLS) estimation for the coefficients g is biased (Hausman, 1978),
and these tests are also expected to be biased.

This paper makes use of two transformations on model (1) to
wipe out respectively these two effects: the centering for the time
effect as in Baltagi (2008) and an orthogonal transformation for the
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individual effect as in Wu and Zhu (2010). Based on these trans-
formed models, we can work out three different estimators of the
variance of the idiosyncratic error, and they are consistent respec-
tively under the presence of the time effect only, the individual
effect only and both effects. Following the idea of Hausman'’s spec-
ification test (Hausman, 1978), we can construct two tests, one for
the individual effect in Section 2 and the other for the time effect
in Section 3. As in Baltagi et al. (1992), these two proposed tests
are robust to the presence of one effect when the other is tested,
while robustness here is achieved by employing the corresponding
transformation to difference out the redundant effect. This mech-
anism makes sure that the tests can be applied to more general
cases than random effects such as the fixed effect and the case that
these two effects are random but correlated with the covariates.
We also demonstrate that the commonly used F tests in the anal-
ysis of covariance (ANOVA F tests) are asymptotically equivalent
to variations of our tests. When the covariates are correlated with
the effects, comparing with the corresponding ANOVA F test, the
proposed test for the individual effect is shown to be asymptoti-
cally more powerful, while that for the time effect has the same
asymptotic power.

Similarly, we also construct a Hausman-type test for individual
and time effects jointly in Section 4, however, it is less powerful
in detecting the existence of the time effect asymptotically. Fortu-
nately, these two proposed test statistics in Sections 2 and 3 are
shown to be asymptotically independent when the idiosyncratic
error is independent of the covariates. This makes it convenient to
combine them to jointly check the presence of both individual and
time effects. As an example, we give a combined test in Section 4
with the asymptotic distribution under the null hypothesis being a
mixed chi-square distribution as in Baltagi et al. (1992).

Monte Carlo evidence in Section 5 shows that the proposed
tests have good size properties and better power properties than
competing tests such as those in Baltagi et al. (1992) when the
covariates are correlated with the effects. We apply our tests to
the crime rate study in Section 6, and show that our tests are more
informative about the existence of county heterogeneity and time
heterogeneity of the crime rate than the existing tests. A short
discussion is given in Section 7. Proofs of theorems and corollaries
are given in the Appendix. Estimators and their asymptotic
normalities of the higher order moments of the idiosyncratic error
and the individual effect are also presented in the Appendix.

2. Test for the individual effect

Lety; = i, Yoo - - -» Yir) s Xi = Xi, Xz, ..., Xir)', i = (Ui,
Up, ..., wir),n = (91, n2,...,1nr), and ¢; be a T-dimensional
vector with all elements equal to one. Model (1) can be rewritten
into the vector form,

Vi = atr +XiB + ity + 1 +u;,

where the idiosyncratic errors {u;} are independent and identi-
cally distributed (i.i.d.) across individuals and time points, {X;} are
i.i.d. across individuals, and E(X;;ui) = 0 for s > t, i.e. covari-
ates X;; are predetermined. The asymptotic results in this paper are
based on the assumption that n tends to infinity and T is fixed, and
this is a commonly used setting in the literature, see Baltagi (2008).
Denote by auz the variance of the idiosyncratic error u;, and it will
play a key role in this paper.

We first consider the test for the individual effect, and it is
usually assumed to be a random variable with mean zero and
finite variance crj. The hypotheses of the test can be formalized as
follows,

i=1,...,n, (2)

w2 W, 2
HO.O'H—O vs Hj .0M>0.

To construct a test robust to the presence of the time effect », we
first wipe it out by centering each term in model (2), and it results
in
?i:Xi:B—i_ﬁilT_'—ﬁi? i:l,...,n, (3)
wherey; = y; — n! ;:]ijxi = X —n’! Z}]:]Xj, i =
wi —n-! j"=1 wi,and 4 = w —n~! ;=1 u;. Note that [|ir]| =
T2, where || - || is the Euclidean norm. Then we can find a
matrix Q such that (T~"?¢,Q) is a T x T orthogonal matrix.
Conducting an orthogonal transformation on model (3) with the
matrix (T2, Q), we have that

GV = GXiB A+ TG + g, (4)
Q¥ = QX + Q' (5)
where i = 1,...,n. The individual effect u; is only present in

model (4), which is a single equation while model (5)isa (T — 1)-
dimensional equation. It is then reasonable to use model (5) only to
obtain a consistent estimator ofauz. ItholdsthatQQ’ = Ir—T~lire}
and Q'Q = Iy_y, where I;, is an m-dimensional identity matrix.
Consider the ordinary least squares (OLS) estimation for model

(5),

n
p = argmin > IQvi-QxBI?
i=1

n -1 n
(z) SRpS, ©)
i=1 i=1

where P# = QQ' = It — T~ 'yri} is independent of the matrix
Q. Note that the above estimator is the same as the so-called
Within estimator in Baltagi (2008). Denote q¢; = T~ "?i;,Q =
(gz, q3,-..,.qr)and q, = (qu, Q2. - - ., qm) for 1 < 1 < T.It holds
that

T
EIQu|* =E [Z(q;ﬁaz] = 407,
1=2

and then, from model (5), we can estimate the variance of the
idiosyncratic error u; by

~ 1 ~
Gou = @'~ Y _IQ G = Xp)I?
i=1
1¢ S ~-
=~ G~ XiB) PG~ XiB). 7)
i=1

where a, = (T — 1)(n — 1) /n. Under some regularity conditions, it
holds that, regardless of the presence of individual and time effects,

VB — ) —=aN@©, £ 271

asn — oo, and 6, is consistent, where ¥y = E(X{PrX;) —

E(X)PrE(X;) and ¥, = E[(X; — EX))PruP; (X — EX))].
Under the null hypothesis of oﬁ =0, it~holds that u; = --- =

wn = 0, and model (3) reduces toy; = X;8 + u;. This leads to

another estimator of o2,
1 n
~2 - )
Gh=b" — ) IF — Xl
i=1

since E||W;||> = byo? with b, = T(n — 1)/n, and B is given as
in (6). Note that, under H!', Glzu is no longer consistent, however,
802u is still consistent. Hence, a statistically significant difference
between a2, and 6, can be interpreted as evidence against the null
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hypothesis H(’f . By following the idea of the Hausman specification
test (Hausman 1978), we can construct a test statistic as follows,

Ty = 1/2 [(Ulu UOu

[0.5T(T — 1)]1/2f<i—1>
0

u

where the scalar @, = 2(00u) JIT(T — 1)] is used to standardize
the statistic.

To study the asymptotic behavior of the proposed test T, we
further assume that
(A1) {;} arei.i.d. with mean zeroand variance 52 = n~ "o} with

a constant o > 0, and

(A2) E(uiw) = 0, n'2E(u?||luil|*) < oo, and n'*E(u;iXy) = £2
Assumption (A1) gives the local alternatives, and the case with
o} = 0 corresponds to the null hypothesis H)'. Assumption (A2)
further restricts the distribution of w; such that we can study the
asymptotic power under the possible correlations between the
individual effect and covariates. Denote by {x}} an i.i.d. sequence
with E(uf) = 0,var(u}) = of, E(ujw) = 0, E(u} |lui]))* < oo
and E(u;X;) = £2.Let u; = n~ 47 for 1 < i < n, and then {su;}
will satlsfy both Assumptions (A1) and (A2).

Theorem 1. Suppose thatE(u;‘t) < 00, E|IXi||* < o0, | Z1| > Oand
cov(Xiur, witr) = 0. If Assumptions (A1) and (A2) hold, then

T, —a0t[0.5T(T — D]V /o + ¢
as n — oo, where ¢ follows the standard normal distribution.

From the above theorem, we can refer to the standard normal
distribution for the critical values or p-values, and the test T, is
nontrivial. Note that the quantity E (u;‘r) is not present in the above
theorem. Actually, it is canceled out in the derivation, however, the
conditions ofE(u ) < coand E||X;||* < oo are still needed to make
some quantities in the derivation meaningful.

Besides the quantity 312“, we may consider another consistent
estimator of o under Hy,

Z i — XiBal%,

where B; = argming > i, Vi
statistic

= [0.5T(T — 1)]”2f( ) = Cip - Fy — din,
Ou

where ¢y, = [0.5nT(T — D]Y2(1 =T~
pl, din = [0.5nT(T — 1)]"?/T and

Glu_ n

— X;B|12. This results in a new test

Din—=1/[(n—=1D(T-1)

ST - XA - 1| QG — XB) )/ — 1)

=
Y IQEi—
i=1

Notice that ¢y, and dj, are two positive constants, and the F,
statistic in fact is the ANOVAF test statistic. The ANOVAF test uses
the critical values that are quantiles from the F distribution with
n—1and (n—1)(T — 1) — p degrees of freedom, and this is justified
under the assumption that u; is normally distributed, see Baltagi
(2008). Let X3 = var(X;) = E[(X; — EX;)’ (X; — EX))].

F, =

XiB) |12 /l(n = 1)(T — 1) — p]

Corollary 1. If | 23| > 0 and the conditions of Theorem 1 hold, then
Tr —>q4(of = T ' R2572'1)[0.5T(T — DIV /ol + &

asn — oo, where §2 and ¢, are defined as in Assumption (A2)
and Theorem 1, respectively.

Because 2 = 0 as 012 = 0 and T; is simply an affine trans-
formation of F, a test based on T;; and a critical value from the
standard normal distribution is asymptotically equivalent to the
ANOVA F test. It can be shown that 0 < T~ 25, ' 2"ty < o2,
and the quantity T”L/TQE;I.Q’LT equals to zero if and only if
cov(ui, tpX;) = n~ /4,2 = 0. We may conclude that our test T,
will be asymptotically more powerful than the ANOVA F test when
the individual effect is correlated with covariates, see the simula-
tion results in Section 5 for more evidences. Note that, unlike T},
the test statistic T,, does not follow an F distribution up to an affine
transformation.

Many efforts recently have been spent on the heteroscedasticity
of individual and time effects, i.e. the variances of {u;} and {#,} are
all different, see Baltagi et al. (2006, 2010) and Montes-Roja and
Sosa-Escudero (2011). Note that the heteroscedasticity of {»;} has
no effect on the results in this section. For the heteroscedasticity of
{u}, the null hypothesis can be set to

HY :var(uq) = -+ = var(uy) =0,

and Assumptions (A1) and (A2) are replaced by a new one as
follows.

(A3) Individual effects {u;} are independent random variables
with E(u)) = 0,07 = limpeon 72Y [ var(u) <
oo, E(uw) = 0,n 230 E(ufllw®) = 0(1) and
4 3L E(uiX) = 0(1).

Corollary 2. Suppose thatE(u;‘t) < 00, E|IXi||* < 0o, | 21| > Oand
cov(Xjir, witr) = 0. If Assumption (A3) holds, then

T, —a02[0.5T(T — )] /ol + ¢
asn — oo, where ¢; is defined as in Theorem 1.

When the null hypothesis H{)‘ is accepted, we may employ

model (3) to estimate the coefficients 8, and it results in 8. It can
be shown that the estimator §; is asymptotically as efficient as the
OLS estimator of model (2) with the absence of both individual and
time effects.

3. Test for the time effect

Suppose that {n;} are random variables with mean zero and
finite variance. To take into account the heteroscedasticity of {7;},
the test for the time effect can be formalized as follows,

Hy :var(n;) =---=var(nr) =0 vs

H" at least one of them is nonzero.
Similar to the case for the individual effect, we first wipe out the

individual effect u; by applying the orthogonal transformation on
model (2) directly, and it results in

QyYi=QXiB+Qn+Qw (8)
and i7y; = To+:XiB+Tpi+ipn+17u;, wherei = 1, ..., n.Under
the null hypothesis H., model (8) reduces to Q'y; = Q’X; + Q'u;,

and we can alternatively estimate the variance of the idiosyncratic
error u; by

51

1T ~
G =7 7 2@ =X
i=1

1 1 N/ pl 7
= > (i = XiB) P (Vi — XiB)
i=1

since E[[Q'w;||*> = (T — 1)o2, and B is given as in (6). Notice
that, under H{, 7, is inconsistent, however, 52, in (7) is consistent.
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Based on the difference between these two estimators, we can
construct a test statistic as follows,

T, = -n(Gy, — Og) + (T — 1).

UOu

To study the asymptotic behavior of T,,, we give the condition
on 7 as follows.

(A4) n = n~"/2¢*, where ¢* a T-dimensional random vector with
mean zero and o} = E||£*||? < o0.

The case with 022 = 0 corresponds to the null hypothesis H_, and
random vector ¢* may be correlated with covariates and even the
idiosyncratic error. Let X4 = Q'E[uu[P(X; — EX)]1Z; ' (EX)Q,
and X5 = 24+ X, — QEX) ¥ ' 2, 2 ' EX)Q.

Theorem 2. Suppose thatE(u ) < 00, E|Xi||?> < o0, | ¥;] > 0and
cov(Xiur, wjtr) = 0. IfAssumptlon (A4) holds, then

T, —allo, Q' + &7

asn — oo, where ¢, is a (T — 1)-dimensional normal random vector
with mean zero and variance matrix Iy_, — au‘z s,

If {w;} is further assumed to be independent of {X;}, then the ran-
dom vector &, is independent of the random variable 1, which is de-
fined as in Theorem 1.

The value of Q is involved in the asymptotic distribution of test
T,. When Q’E(X;) = 0, i.e. E(X;) is independent of ¢, it holds that
X5 = 0, and the asymptotic distribution of T,, under the null hy-
pothesis Hg is just the chi-square distribution with T — 1 degrees
of freedom, XTz_l- In real applications, we may first center the co-
variates X;, resulting in )N(,- of (3), and then perform the test T, with
p-values or critical values calculated from x7_,.

Similar to the case of T; in the previous section, we may con-
sider another test statistic for the time effect,

T— T-1

~2 _
= NG = Fo) + (T =D =

*
T, =——

1 1< ~
~2 _ (. — X. 2
G =7 n{_}ﬂ 1Q"(vi — XiB2) 1%,

P = arginin > IR i = XiB)lI,
i=1
and
— XiB)I2}/(T = 1)

;{nQ’(m —XiB)I> — Q' ¥

SIQ/ G — XB)IP/L(n — (T — 1) — p
i=1

Under Hy, the ANOVA F test statistic F, follows the F distribution
withT — 1and (n — 1)(T — 1) — p degrees of freedom when the
idiosyncratic error u; is normally distributed, see Baltagi (2008).

Corollary 3. Suppose that E(u2) < oo, E|Xi[|> < oo, |¥i| >
0, cov(Xjtr, witr) = 0 and Q'E(X;) = 0. If Assumption (A4) holds,
then

T —qllo, QL + &l

asn — oo, where ¢, is defined as in Theorem 2.

From the above corollary, unlike the counterpart in the previous
section, the test T, is asymptotically not more powerful than, the
ANOVAF test.

When the time effect is fixed, i.e. n1, ..., nr are non-random
with 23:1 n: = 0, we assume that £* is a constant vector, and then
Theorem 2 still holds. When the null hypothesis of Hg is accepted,
we can consider the feasible GLS estimator of the coefficients 3,
and it is asymptotically efficient regardless of the presence of the
individual effect, see Baltagi (2008).

4. Test jointly for both individual and time effects

Besides these tests in the previous two sections, we sometimes
are interested in testing for the presence of individual and time
effects jointly The hypotheses can be formalized as follows,

Hy" M =var(n) =---=var(yy) =0 vs
H"" : at least one of them is nonzero.

Under Hj)", model (2) reduces toy; = atr + XiB + u;, and we
may consider an estimator of 02 as follows,

Gy = (1)~ ZHM—OHT—X,BH

where E||u,||2 = To}? ,Bis glven asin(6),and@ = (nT)"' Y i,
(i — Xlﬂ). Note that @ and G a3u are consistent only under the null
hypothesis H(‘)‘ 7. Similarly, we can construct a Hausman-type test
by comparing o2, with 52, in (7), and it results in

6.\2
T = [0.5T(T — 1)]V2/n (%2“ - 1) .
UOu

Let (a3, B3) = argmin, 4 Zj:l lyi — atr — XiBll*, and 53, =
(nT)~' Y"1, llyi — @str — XifBs]1%. As in the previous two sections,

we may consider another test statistic

1/2[( - )=C2n'F,un_d2n»
Ou

where ¢y, = [0.5nT(T — D]VY2(1-T~
(T — 1) — pl, day = [0.5nT(T —

T*

w1 = [0.5T(T —

D(A=n"H(n+T-2)/[(n—
DIY3(T 4+ n — 1)/(Tn) and

Y (llyi — @i — XBI2 — 1Q'Gi — XB) 12}/ (n+ T —2)
i=1

Fup = 7
> 1Q'G =X/l = (T = 1) = p

i=1

When the idiosyncratic error u; is normally distributed, the
ANOVAF test statistic F,,,, follows the F distribution withn+4T —2
and (n — 1)(T — 1) — p degrees of freedom under H"”, see Baltagi
(2008). Let g = X3 + E(X))P7E(X;) and

8 = T2 [GEX) 25 ' 21
+T 12525 — EXX)]Z; ' 2/t

Theorem 3. Suppose that E(u}) < oo, E|Xi|* < oo, |Z| > 0,
|Zs| > 0 and cov(Xtr, witr) = 0. If Assumptions (A1), (A2) and
(A4) hold, then

Ty —a 02[0.5T(T — D2 /o2 + &
and

T

il —>d(cr] —8)[0.5T(T —

DI'?/o + &

asn — oo, where 2 and ¢, are defined as in Theorem 1.
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Forboth tests T,,,; and T}, ;, we can refer to the standard normal
distribution for critical values and p-values since 2 = 0and § = 0
asof = 0.1t holds that 0 < § < o7, and quantity § equals to zero
if cov(ui, (;Xi) = n~ 42 = 0.

Moreover, these two tests in Theorem 3 fail asymptotically to
detect the presence of the time effect in Assumption (A4), i.e. they
suffer asymptotic loss in the power comparing with the test for the
time effect T, in the previous section. Note that, from Theorems 1
and 2, /n(c}, — 65,) = 0p(1) and n(c3, — 05,) = Op(1). We
may argue that the test for the time effect can detect smaller de-
parture from the null hypothesis than that for the individual effect,
and such sensitivity will be masked in the testing for the null hy-
pothesis Hy "

From Theorem 2, test statistics T, and T, are asymptotically
independent if {u;} is independent of {X;}, and then we may
achieve a more powerful test for Hy"” by combining these two
tests. A direct way is to employ the Bonferroni method to give the
rejection region,

{Ty > zypp0rT, > Xj/”,l},

where « is a predetermined significance level, and z,,, and
X§/2,T—1 are respectively the 100(1 — «/2)th percentiles of the

standard normal distribution and the x7_, distribution.
We next introduce a test with test statistic

Ty = 0T + (1 — o)T,,

where the weight w € [0, 1] can be specified by practitioners. From
Theorems 1 and 2, we have that

T —a |o2[0.5T(T — )]/ + ¢
+(1—wlo, 'Q'¢* + &,

asn — oo.Under H)", if Q'E(X;) = 0 and {u;} is independent of
{X;}, then

T —~aox7 + (1 — 0) x5, 9)

asn — oo. Sometimes we may have no preference about the
weight in T,,,. It can be simply set to w = 0.5, and the asymptotic
distribution of T,,,» under Hy" is just 0.5x#. When @ = 1, the test
statistic T,,,» will reduce to Tﬁ, which corresponds to the two-sided
test of T,, and is then less powerful. Actually, there are still many
other choices besides T,,,, however, their asymptotic distribution
under the null hypothesis may not be as simple as the mixed chi-
square distribution in (9).

When the null hypothesis Hy " is accepted, the commonly used
OLS estimator of the coefficients 8 will be efficient. Otherwise, we
have to consider its estimation based on the general two-way error
component model (2), and one can be referred to Chapter 3 of
Baltagi (2008).

5. Simulation studies

We conduct four simulation experiments in this section to
study the finite-sample performance of the proposed tests and
the estimators for higher order moments of the idiosyncratic error
and the individual effect. All simulation results are based on 1000
replications and the significance level is set to 0.05.

The first experiment is for the test T,. Six currently used tests for
the individual effect are also calculated for the sake of comparison,
and they are a test in Breusch and Pagan (1980) (hence BP,, test),
a test in Honda (1985) (H,,), a modified two-sided test (BSY1) and
a modified one-sided test (BSY2) in Bera et al. (2001), a test robust
to the time effect in Baltagi et al. (1992) (BCL,,) and the ANOVA F
test (F,,). The abbreviations are similar for the other two types of

tests in this section. The data generating process is

Vie = 0.5 4+ X" +2X + i + ne + g, (10)

M

where X;, ,Xi(tz) , ui and n; follow the normal distributions with

mean zero, var(Xi(t”) = var(Xi(tZ)) = 1,var(u;) = aﬁ,var(nt) =
0,72, corr(Xi(t]) , i) = p, and u;; follows the standard normal distri-
bution, N(0, 1), or +/0.5(x?> — 1). When p # 0, X\" and X" are
also correlated for t # s, and then we further set corr(Xi(tU, X,-(sl)) =
p?. Note that 0, = 0 or >0 corresponds respectively to the size
or the power, and o, = 0 or >0 to the absence or the pres-

ence of the time effect. Let X,.(l) = Xi(f), - ,Xi(TU)/. Sequences
{Xfl)}, {X,-(f)}, {wi}, {n:} and {u;} are set to be i.i.d., and are inde-

pendent of each other except for {X,-(])} and {u;} with p # 0. We
check the performance of the test T, under three situations: (i) the
standard setting, i.e. o = 0 and u;; follows N(0O, 1), (ii) the non-
normal setting, i.e. p = 0 and u;; follows \/ﬁ(xf — 1), and (iii)
the correlated setting, i.e. o > 0 and u;; follows N(0, 1).

For the standard setting, we set the sample sizes (n,T) =
(100, 5), (100, 10) or (200, 10), and Table 1 lists the empirical sizes
and powers of the test T, and other six tests for the individual
effect. When the time effect is present, the sizes of four tests BP,,,
BSY1, H,, and BSY2 are all distorted, where the first two are too
sensitive while the last two are too conservative. This is consistent
with our expectation since these four tests are all based on the
one-way error component model. The test BCL,, still has acceptable
sizes even when the number of time points is as small as T = 5.
Roughly speaking, tests BCL,,, F,, and T,, have comparable powers.
Specifically, our test T, outperforms BCL, and F,,. The test F, is
more powerful than BCL,, when the time effect is absent, however,
it is less powerful when the time effect is presented. Table 2 gives
the empirical sizes and powers under the non-normal setting,
where u;; follows the non-normal distribution. It can be seen that
our test T,, is most powerful as in the standard setting, and both
BCL, and F, are robust to the non-normality. We also tried the
Student’s t distribution with five degrees of freedom, ts, for u;;, and
the results are similar. For the correlated setting, we consider three
values for the correlation coefficient ole-(tD and p;, p = 0.25,0.5
and 0.75, and the sample sizes are (n, T) = (200, 10). Table 3 gives
the empirical powers. When the value of p increases, the powers
of tests BCL,, and F,, decrease substantially, however, those of our

test T, are not affected. Note that p = corr(Xi([]), ni) = 0as

var(u;) = oi = 0, i.e. the correlated setting will reduce to the
standard setting in evaluating the sizes.

The second experiment is to compare the proposed test T, with
four currently used tests for the time effect, BP,, H,, BCL, and F,,.
We employ the data generating process (10) with p = 0, and the
sample sizes are set to (n, T) = (100, 5). It is noteworthy to point
out that o, = 0 or >0 corresponds to the absence or the presence
of the individual effect, and o,, = 0 or >0 to the size or the power.
Three distributions are considered for the idiosyncratic error u;:
N(0, 1), ~/0.5(x? — 1) and +/0.6ts. Table 4 lists the empirical sizes
and powers of these five tests for the time effect. Note that BP,
and H,, are based on the one-way error component model, and the
distortion of their sizes is observed again. The three tests BCL,, F,
and T, have comparable powers, and the powers of our test T, are
all greater than those of F,, although the difference is slight. We also
considered the case with the time effect and covariates correlated,
and the findings are similar to the correlated setting in the first
experiment.

The third experiment is to compare the proposed tests T,,,,; and
T,.;2 with two currently used joint tests for both individual and
time effects, BP,,,, and F,,,,. The data generating process (10) is used
again, and we consider the standard case, p = 0, and the case
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Table 1

Empirical sizes and powers of test T,, and other six tests for the individual effect

under the standard setting. The nominal rate is 5%.
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Table 3
Empirical powers of test T,, and other six tests for the individual effect under the
correlated setting. The nominal rate is 5%, and (n, T) = (200, 10).

o, P BP, BSY1 H, BSY2 BCL, F, T,
o, o, BP, BSY1 H, BSY2 BCL, F, T,
o, =0.0
(n, T) = (100, 5) 01 025 0119 0099 0.180 0.164 0.180 0202 0256
00 00 0040 0040 0.041 0037 0033 0044 0.066 050 0070 0062 0.124 0.102 0.120 0.175 0275
0.1 0050 0045 0070 0.065 0052 0070 0.111 075 0054 0047 0.066 0063 0.064 0.111 0291
02 0241 0.173 0315 0243 0281 0322 0379 02 025 0825 0749 0882 0832 0876 0910 0940
05 00 0273 0257 0003 0020 0040 0.039 0.056 050 0526 0447 0618 0557 0.606 0.802 0931
01 0237 0218 0011 0038 0091 008 0.123 075 0.104 0088 0.170 0.134 0.155 0464 0917
02 0130 0.187 0072 0096 0332 0318 0.388 o —os
10 00 0804 0552 0000 0047 0035 0034 0.046 n ==
01 0760 0503 0001 0062 0.107 0.096 0.140 01 025 0272 0282 0007 0024 0215 0227 0276
02 0629 0497 0010 0.099 0354 0332 0399 050 0343 0320 0004 0018 0.133 0.167 0265
(.T) = (100, 10) 075 0432 0372 0001 0010 0070 0.100 0.284
’ ’ 02 025 0203 0323 0242 0304 0900 0920 0949
00 00 0046 0.052 0045 0.039 0042 0.046 0.060 050 0132 0219 0085 0.138 0654 0816 0944
01 0116 0.106 0175 0.165 0.168 0.181 0212 075 0294 0293 0008 0021 0.188 0471 0918
02 0665 0588 0743 0683 0726 0747 0784 o —10
05 00 0285 0276 0002 0008 0047 0044 0.056 n" =
01 0143 0.197 0017 0038 0172 0.160 0.191 01 025 0938 0689 0000 0024 0221 0231 0280
02 0185 0220 0233 0250 0751 0735 0774 050 0948 0745 0.000 0020 0.133 0.169 0281
1.0 00 0917 0663 0000 0006 0045 0.041 0.057 075 0970 0753 0.000 0.013 0082 0.118 0.288
0.1 0829 0595 0000 0011 0193 0.175 0209 02 025 0709 058 0004 0094 0891 0912 0950
02 0513 0474 0012 0067 0752 0737 0770 050 0825 0675 0.000 0048 0.625 0783 0.940
(n.T) = (200, 10) 075 0937 0719 0000 0019 0.171 0466 0.904
00 00 0048 0041 0054 0053 0055 0055 0.058
0.1 0175 0.154 0245 0223 0236 0248 0287 Table 4
0.2 0913 0.854 0.946 0.907 0945 0947 0.958 Empirical sizes and powers of test T, and other four tests for the time effect. The
05 00 0500 0399 0001 0009 0049 0.044 0.053 nominal rate is 5%, and (n, T) = (100, 5).
0.1 0262 0284 0014 0036 0241 0229 0261
02 0286 0383 0365 0393 0937 0931 0943 % % BP H, BCL, Fy T
1.0 00 0976 0750 0000 0012 0051 0047 0.058 Ui ~ N0, 1)
0.1 0927 0704 0000 0025 0254 0240 0270
02 0695 0597 0010 0112 0942 0938 0947 0.0 0.0 0.033 0.041 0.041 0.049 0.052
0.1 0.225 0275 0.270 0312 0.330
0.2 0.680 0.716 0.723 0.745 0.757
0.5 0.0 0.012 0.014 0.052 0.046 0.048
0.1 0.146 0.179 0.324 0.303 0.313
Table 2 0.2 0.577 0.621 0.763 0.756 0.759
Empirical sizes and powers of test T, and other six tests for the individual effect 1.0 0.0 0.000 0.000 0.056 0.044 0.046
under the non-normal setting. The nominal rate is 5%. 0.1 0.029 0.041 0.329 0.299 0.303
o o,  BP, BSYl  H, BSY2  BCL, F, T, 0.2 0.365 0.410 0.753 0.732 0.736
(n,T) = (100, 5) ue ~ V05(x2 — 1)
00 00 0044 0037 0045 0051 0036 0046 0.064 0.0 0.0 0.018 0.026 0.028 0.039 0.043
0.1 0061 0062 0090 0085 0068 0098 0.122 0.1 0.230 0.277 0.276 0.320 0.332
02 0206 0150 0296 0216 0253 0304 0.373 0.2 0.669 0.708 0.697 0.732 0.741
05 00 0316 0247 0009 0025 0048 0045 0.061 0.5 0.0 0.007 0.013 0.058 0.051 0.053
01 0215 0217 0016 0044 0106 0.100 0.134 0.1 0.137 0.171 0339 0.316 0.331
02 0120 0208 0054 0110 0299 0282 0365 02 0.589 0.629 0762 0.751 0756
10 00 0795 0579 0002 0043 0051 0048 0.063 10 0.0 0.001 0.001 0.063 0.053 0.056
01 0754 0538 0001 0062 0103 0091 0.130 0.1 0.025 0.046 0.366 0.338 0.342
02 0630 0506 0009 0084 0347 0334 0390 02 0.359 0.398 0785 0.768 0.771
(n, T) = (100, 10) ;e ~ +/0.6ts
00 00 0045 0042 0046 0044 0045 0.048 0.061 0.0 0.0 0.025 0.039 0.034 0.052 0.054
01 0106 0.104 0.158 0.155 0.144 0.158 0.192 0.1 0.241 0.285 0.287 0.315 0.324
02 0622 0545 0721 0648 0706 0726 0.764 0.2 0.677 0.720 0.709 0.736 0.742
05 00 0278 0260 0003 0011 0054 0045 0.062 0.5 0.0 0.005 0.012 0.054 0.052 0.053
0.1 0.152 0.197 0.022 0034 0.164 0.159 0.186 0.1 0.148 0.189 0.333 0.314 0.330
02 0176 0226 0227 0242 0768 0744 0783 0.2 0.577 0.636 0.765 0.755 0.762
1.0 00 0912 0664 0000 0.007 0045 0.040 0.054 1.0 0.0 0.000 0.000 0.062 0.046 0.048
0.1 0831 0631 0000 0021 0.161 0.146 0.176 0.1 0.026 0.046 0.356 0.324 0.332
02 0516 0474 0015 0075 0785 0769 0.808 0.2 0.351 0414 0.798 0.770 0.778
(n, T) = (200, 10)
00 00 0044 0047 0033 0032 0031 0035 0.044 with correlation, p = 0.5. The sample sizes are set to (n,T) =
g-; 8;3411 8;‘312 g-ggg 8-;(1)3 g-;g? gggi g-ggg (100, 5), (100, 10) or (200, 10), and we fix w = 0.5 for simplicity.
05 00 0489 0420 0003 0012 0054 0050 0059 Table 5 gives the empl.rlcal sizes and powers of these .fou.r Fests.
01 0274 0294 0013 0038 0243 0230 0257 Note that the correlation happens only between the individual
02 0304 0403 0.393 0427 0955 0952 0.956 effect and the covariates, and then there is no correlation when
1.0 g'(l) 83;3 8;23 8'888 g-g;? g-ggg ggj; gggg 0, = 0. The sizes of all four tests are close to the nominal value
02 0685 0578 0013 0034 0940 0938 0949 0.05, and our tests T,,,,; and T, are both robust to the possible

presence of correlation. Test T, is more powerful than T, as
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Table 5
Empirical sizes and powers of tests T,,1, T,,;2 and other two joint tests for both
effects. The nominal rate is 5%.

p=0.0 p =05
BPHU FIUI T/Uﬂ TMZ BPI“J Fun Tmﬂ Twﬂ
(n,T) = (100, 5)

00 0.0 0032 0052 0063 0.049
0.1 0.049 0.102 0.131 0.081 0.039 0.080 0.129 0.078
02 0.171 0306 0375 0211 0074 0226 0376 0220
0.1 0.0 0.191 0.072 0.097 0.282
0.1 0.180 0.123 0.169 0.247 0220 0.132 0.197 0.325
02 0292 0.390 0446 0401 0219 0318 0452 0.442
02 0.0 0657 0265 0299 0.729
0.1 0.632 0.334 0398 0713 0.676 0350 0427 0.746
0.2 0.676 0.600 0.649 079 0643 0505 0646 0.780

(n, T) = (100, 10)

00 0.0 0026 0034 0.048 0.049
0.1 0.089 0.160 0.188 0.084 0.049 0.119 0.194 0.102
0.2 0561 0.706 0.742 0423 0226 0539 0750 0431
0.1 0.0 0334 0.141 0.163 0.465
0.1 0372 0307 0345 0462 0376 0267 0358 0522
0.2 0.705 0.815 0.843 0.760 0459 0.694 0841 0.730
02 0.0 0906 0619 0659 0935
0.1 0911 0.741 0771 0953 0918 0709 0764 0.939
0.2 0958 0965 0972 0974 0930 0930 0970 0.978

(n, T) = (200, 10)

00 0.0 0037 0047 0.055 0.044
0.1 0.126 0.239 0.269 0.094 0.066 0.159 0267 0.105
0.2 0.866 0.940 0.953 0.723 0407 0778 0917 0678
0.1 00 0672 0213 0234 0775
0.1 0713 0.535 0564 0816 0.677 0419 0533 03816
0.2 0956 0.970 0.977 0970 0808 0910 0972 0.950
02 0.0 0991 0786 0.806 0.996
0.1 0982 0.882 0.891 0.985 0.992 0.891 0920 0.996
02 0.999 1.000 1.000 0.998 0.990 0992 0999 0.999

61] 0}!

o, = 0, however, is less powerful as o, > 0. Note that, when
o, = 0, only the term Ti in the test statistic T,,, can provide
the power. It is equivalent to a two-sided test of T, and is less
powerful.

The fourth experiment is to study the estimators for higher or-
der moments of u; and u; in the Appendix. The data generating
process is given as in (10) with p = 0. We consider four pairs
of different distributions for u; and w;: (i) N(0, 1) and N(0, 1),
(ii)4/0.75tg and N (0, 1), (iii) +/0.75tg and +/0.75tg, and (iv) N(0, 1)
and x/ﬁ(xlz — 1), where tg is the Student’s t distribution with
eight degrees of freedom. The sample sizes are set to (n,T) =
(50, 10) or (100, 10), and the corresponding estimators in Wu and
Su (2010) are also calculated for the sake of comparison. The em-
pirical means and empirical standard deviations are presented in
Tables 6 and 7 respectively for the cases with n = 50 and 100. Note
that the method in Wu and Su (2010) cannot be used to construct
the estimators of third order moments. It can be seen that our es-
timators are slightly better.

6. Areal example

Cornwell and Trumbull (1994) considered an economic model
of crime for panel data on 90 counties in North Carolina from 1981
to 1987,

Rit = o 4 Py + XiB + i + ne + e,
i=1,2,....n,t=12,...,T,

where R;; is the crime rate, which is an FBI index measuring the
number of crimes divided by the county population, P; includes
deterrent variables and X;; contains variables measuring returns to
legal opportunities, see also Baltagi (2006). There are four deter-
rent variables: the probability of arrest (P,), which is measured by

Table 6

Empirical means and empirical standard deviations (in the parenthesis) of the
estimators of higher order moments by the methods in the Appendix (WL) and in
Wu and Su (2010) (WS) for four pairs of different distributions of u; and w; with
(n, T) = (50, 10).

True value 0, =0 o, =1
WL WS WL WS
Pair (i)
v, 1.0000 1.0003 1.0012 1.0032 1.0030
(0.0674) (0.0989) (0.0679) (0.0964)
y5  0.0000 0.0005 —0.0077
(0.1902) (0.1916)
vi  3.0000 3.0008 2.9291 3.0112 2.9787
(0.5383) (1.1328) (0.5394) (1.1322)
¥, 1.0000 0.9978 0.9958 0.9922 0.9836
(0.2182) (0.3124) (0.2318) (0.3100)
y3+  0.0000 —0.0154 —0.0232
(0.4240) (0.4350)
ys  3.0000 2.9951 2.7931 3.0049 2.5643
(1.6088) (2.9550) (1.7287) (2.6596)
Pair (ii)
v, 1.0000 1.0009 0.9993 0.9970 0.9960
(0.0848) (0.1066) (0.0847) (0.1054)
v 0.0000 —0.0144 0.0059
(0.3949) (0.3881)
vi 45000 4.4068 4.2846 4.3926 42791
(2.3077) (2.8391) (2.2102) (2.5877)
¥, 1.0000 1.0066 1.0039 0.9820 0.9816
(0.2258) (0.3119) (0.2247) (0.2998)
y3'  0.0000 —0.0012 —0.0077
(0.4121) (0.4115)
ys  3.0000 3.0268 2.7744 2.8639 2.5948
(1.5644) (2.7649) (1.5430) (2.5709)
Pair (iii)
v, 1.0000 0.9968 0.9980 0.9987 0.9941
(0.0865) (0.1112) (0.0848) (0.1117)
v 0.0000 —0.0099 0.0046
(0.4726) (0.3570)
vi 45000 45442 45991 4.3503 42739
(4.1050) (7.8376) (1.6972) (2.5514)
¥, 1.0000 0.9806 0.9890 0.9949 0.9948
(0.2729) (0.3440) (0.2580) (0.3380)
y3+  0.0000 0.0150 —0.0061
(0.8831) (0.7924)
ys 45000 4.1871 3.8972 4.1150 3.5968
(5.6770) (5.9752) (4.2207) (4.8422)
Pair (iv)
y,' 1.0000 1.0025 0.9968 0.9998 0.9987
(0.0681) (0.0955) (0.0661) (0.0943)
vy 0.0000 —0.0110 0.0009
(0.1928) (0.1874)
vs  3.0000 3.0089 2.9613 2.9904 2.9375
(0.5169) (1.1209) (0.5537) (1.0983)
y," 1.0000 0.9735 0.9817 0.9846 0.9888
(0.5352) (0.5723) (0.5147) (0.5500)
vy 2.8284 2.7682 2.7114
(3.7871) (3.2512)
y4  15.0000 14.7120 13.9410 13.7476 12.8299
(41.9907) (42.1844) (28.1626) (26.0643)

the ratio of arrests to offenses, the probability of conviction given
arrest (P¢), which is measured by the ratio of convictions to ar-
rests, the probability of a prison sentence given a conviction (Pp),
measured by the proportion of total convictions resulting in prison
sentences, and the average prison sentence in days (S) as a proxy
for sanction severity. The variables in X include the number of po-
lice per capita (Police), the population density (Density), which is
the county population divided by county land area, the percent
young male (Male), which is the proportion of the county’s pop-
ulation that is male and aged between 15 and 24, and the average
weekly wages in the county from nine industries (Wage1-Wage9).
There are sixteen covariates in total, and all variables are in logs.



576 J. Wu, G. Li / Journal of Econometrics 178 (2014) 569-581

Table 7

Empirical means and empirical standard deviations (in the parenthesis) of the
estimators of higher order moments by the methods in the Appendix (WL) and in
Wu and Su (2010) (WS) for four pairs of different distributions of u;; and u; with

Table 8
Values of three test statistics for the county-specific effect, BCL,,, Tl’j and T),.

Length of time points (T)

(n, T) = (100, 10). 3 4 5 6 7
True value o, =0 o, =1 BCL, —0.87* —0.82** 4.79 5.30 5.05
WL WS WL WS T 31.76 33.83 28.41 28.79 20.49
— T, 5527.00 1936.60 1578.50 280.81 462.66
Pair (i) Note: the p-values of BCL,, at T = 3 and 4 are respectively 0.81(*) and 0.79 (**), and
7 1.0000 1.0007 1.0013 1.0028 1.0025 all others are less than 0.0001.
(0.0479) (0.0680) (0.0481) (0.0668)
y¥  0.0000 0.0033 0.0045 Table 9
. (0.1318) (0.1402) The p-values of the three tests for the time effect, BCL,, F, and T,,.
y&  3.0000 3.0028 2.9931 3.0138 2.9736
(0.3783) (0.8336) (0.3884) (0.7779) Tests Length of time points (T)
ys 1.0000 0.9870 0.9878 0.9929 0.9897 3 4 5 6 7
(0.1557) (0.2188) (0.1573) (0.2162)
I 00000 0.0061 0.0001 BCL, 0.5920 0.0898 0.1520 0.1376 0.0240
(0.2965) (0.2795) F, 0.4226 0.1037 0.1364 0.1474 0.0457
Yt 3.0000 59337 27650 5.9462 27955 T, 0.2228 0.0317 0.0591 0.0759 0.0162
(1.1136) (2.0021) (1.1144) (2.0447)
Pair (ii) a correct decision due to the small values of T, and the county-
yi 10000 1.0025 1.0035 0.9977 0.9959 specific effect is confirmed for this subset. Note that the test F,
(0.0621) (0.0772) (0.0620) (0.0776) is equivalent to T}, and the three test statistics, BCL,,, T;: and T,
y¥  0.0000 —0.0073 0.0056 are comparable since they have the same asymptotic distribution.
. (02718) (02913) Table 8 lists the values of these three test statistics. It can be seen
va 45000 4i4574[1]796 4i4;§§2 42'4]59222] 42'46377;3 that the values of T, are significantly greater than those of other
i 10000 5).5939 ) E).észo ) 5).5975 ) 35993 ) two test statist_ics. T_his partially verifies the powerfulness of our
(0.1640) (0.2278) (0.1516) (0.2109) test T, comparing with BCL,, and F,,. Note that the county-specific
y;~  0.0000 0.0061 —0.0076 characteristics were argued by Cornwell and Trumbull (1994) to be
(0.2858) (0.2829) correlated with the covariates (P}, X},)’, see also Baltagi (2006).
vs 30000 2.9882 2.8336 2.9566 2.7896 We next test for the presence of the time effect. The covari-
(1.1581) (21707) (1.0746) (1.8683) ates Py and X; are first centered by P, = n~ ') ! | Py and X, =
Pair (iii) n~1 3" | X, and then the test T, as well as other two tests for the
y&  1.0000 1.0002 0.9968 0.9989 0.9988 time effect, BCL, and F,, are conducted. Their p-values are given in
. (0.0599)  (0.0757)  (00582)  (0.0738) Table 9, and those for the test T, are calculated from a x2_,. At the
vi 00000 00117 —0.0025 5% significance level, the time effect is confirmed by these three
(0.2694) (0.2564) & U y
Y& 45000 4.4540 43594 4.4246 43382 tests when T = 7, and is shown to be absent by BCL, and F, when
(1.3509) (1.7810) (1.3491) (1.7784) T < 7. We may conclude the existence of the time effect based on
¥, 1.0000 1.0014 0.9994 1.0072 1.0012 our test while tests BCL, and F, may require a large sample size
. (0.1950) (0:2466) (0:2037) (02481) to be effective. From Table 9, the p-values of T, are all less than
vs 00000 ?(506[]18;4) (?)07'%3? those of BCL, and F,, and we may argue that our test T, is more
Yt 45000 44286 42291 46572 43361 powerful. Finally, we perform the test T, with w = 0.5 as well as
(3.6203) (4.7358) (5.5419) (6.3122) T,n1, BP,, and F,,,, to jointly check the presence of both effects, and
Pair (1 all calculated p-values are less than 0.0001. Note that these four
air (iv) . . . c . .
test statistics have different null distributions, and we may not be
vy 10000 1.0019 0.9999 1.0005 1.0004 able to compare their powerfulness by values of the test statistics.
(0.0474) (0.0654) (0.0462) (0.0663)
y¥  0.0000 —0.0038 0.0029 . .
(0.1313) (0.1340) 7. Discussions
y&  3.0000 3.0108 2.9604 3.0021 2.9542
. (0.3744) (0.7585) (0.3746) (0.8156) An important application of tests for individual and time effects
v, 10000 1.0025 0.9987 0.9870 0.9894 is to construct an efficient estimator of the coefficients . For
v 28284 (2(.);‘7%%3) (04167) (2(.)%%795) (0.3970) example, if the null hypothesis Hg for the time effect is accepted,
: (2.6188) (2.4520) then we may employ the feasible GLS to estimate §, and it is
v& 15.0000 15.3352 14.8863 14.4445 14.1470 asymptotically efficient regardless of the absence of the individual
(23.8481) (25.5117) (24.0418) (24.3741) effect. However, when Hg is wrongly accepted, the resulting

Cornwell and Trumbull (1994) emphasized the existence of the
county-specific effect u; as well as the time effect 5, and they were
also verified by some F tests in Baltagi (2006). This section analyzes
this panel data again to demonstrate the performance of the three
proposed tests.

We concentrate on a subset of the above panel data, which con-
sists of 21 counties in western North Carolina, since the p-values of
tests on the whole data are all tiny. The test T, and other two tests
for the county-specific effect, BCL,, and F,,, are first considered for
the data in the first T years with T = 3,...,7. The p-values of
BCL, with T = 3 and 4 are both around 0.8, and others are all less
than 0.0001. We may conclude that the test BCL,, fails to provide

feasible GLS estimator will be inefficient and even inconsistent as
n; is a fixed effect. Suppose that EX; = cir for some scalar c, {n;}
arei.i.d. with N(O, cr,?), and are independent of {u; } and X;, and the

significance level is set to 5%. When o} = o7 /n > Oand n — oo,

by Theorem 2, we can calculate the probability that Hg is falsely
accepted,

2
X0.05,7—1

2
P(Ty < X005,7-1) =F m
2 u

where F(-) is the distribution function of x7_,, and xg o5 7_; is the
95th percentile of x7_; with F(x§ s 7_;) = 0.95. This probability
will tend to 95% when 022 — 0, and it may be even higher for
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a finite sample size n. Leeb and Potscher (2005) carefully studied
all kinds of situations for the parameter estimations following a
predetermined model selection procedure, and these are called
“post-model-selection estimations”. It is interesting to similarly
discuss the “post-testing estimators” of the coefficients 8 under
the proposed tests in this paper.

The second possible extension is to apply the methodology
in this paper to the two-way error component model with
autoregressive (AR) idiosyncratic errors, see Lillard and Willis
(1978) and Chapter 5 of Baltagi (2008). For example, we can first
apply the Prais-Winsten transformation matrix to transform the
AR errors into serially uncorrelated errors, and then obtain the
estimators of the coefficients in the AR part iteratively. Based on
these fitted parameters, we can transform the serially correlated
panel data model into the standard two-way error component
model (1), and then the method in this paper can be applied.

Another application is to the spatial panel data models, which
have attracted more and more attentions, see Baltagi et al. (2007),
Yuetal.(2008), Lee and Yu (2010a,b), etc. The maximum likelihood
estimation (MLE) is usually considered in this literature, and
then the corresponding tests are based on the assumption of
Gaussian. However, Baltagi (2008, Chapter 10) argued that the MLE
may involve substantial problems in computation when the cross
section dimension (n) is large. Kapoor et al. (2007) suggested a
method of generalized moment (GM) estimation for the spatial
parameter in the spatial panel data model with no assumption on
the distributions. Although Kapoor et al. (2007) did not consider
the time effect in the disturbances, it is not difficult to modify their
moment conditions to obtain a new GM estimation when the time
effect is presented. Based on this estimate, the spatial panel data
model can be rewritten into the classical static panel data model
(1). Then tests for individual and time effects and the estimation of
higher order moments can be derived similarly.

Finally, after some proper modifications, the methodology in
this paper can be extended to handle the dynamic panel models,
see Wu and Zhu (2012). In addition, Li and Zhu (2010) considered
a test for semi-parametric mixed models for longitudinal data
without the time effect. We believe that our method can be further
extended to more general settings such as semi-parametric or non-
parametric models.
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Appendix. Technical details

We first present the proofs of Theorem 1, Corollaries 1 and 2,
Theorem 2, Corollary 3 and Theorem 3, and then discuss the case of
higher order moments of the idiosyncratic error and the individual
effect.

Proof of Theorem 1. Since {X;} and {u;} are both i.i.d. sequences,
we have that

n1/2 Z

i —E(Xi)] = 0,(1), 0,(1),

n
2y =
i=1

7ZX1 tr = le tr

g

= X1 +0,(1), (11)
and
1 n
LN /pl

il ZX{PLT = > (Xi — EX)'Pru;
i=1

n ! n

+ |:n‘1 > Xi— EXi):| Pr |:n_1/2 Zuj}
i=1 j=1

[Z(x, — EX)'Pu; + 0p(1). (12)

Note that E[(X; — EX;)' Prw;] = E(Xju;) — T~
Together with (11) and (12), it implies that

Ycov(Xir, ultr) = 0.

2 e = 1 LS Pl
VB —p) = = ﬁ;(xl EX) Pru;

+0,(1) >4 N, ;' 5,27, (13)

where ¥ = E(X{PoX;) — E(X{)PrE(X)), and &, = E[(X; —
), we can show that

1T
EX;) PruiwiP;L (X; — EX;)]. From (11)-(13

1 & ~a 1 & - ~ —~
7 DI Gi - XiB)I? —nZ QT + Q'Xi(B — B)II”
i=1 i=1
= N2 Zu{[{#u, + 0,(1)
- Zull’;u, |:n‘1 Zui]
i=1

n
x Pt |:n_1/2 Zuj} + 0p(1)

=1

-l n
— > 1Qwil* + 0p(1),
=
which implies that
Oou = Z 1Q"wi[|*/(T = 1) + 0, (n~"/2). (14)
From Assumption (A2), we can show that

n n
nTY wi=0p(D. TVt = 0,(1) and
i=1

i=1

n (15)
Y X = 2 + 0p(1).

i=1
It is implied that

n
n~1/4 Zﬁ,ﬁi = 0,(1) and

= (16)

n
Y X = 2+ 0p(1).
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Furthermore, by using methods respectively similar to (11) and
(12), we have that

—1Zxx =0,(1) and n WZx/m =0,(1). (17)

Thus, by (16), (17) and Assumption (A1),
1 2”: ~
— ) IV —XBI* =
Vi

1 &~ ~
=7 D P + 1 ir > + 0p(1)
i=1

1 e~ < -
ﬁ E [lw; + fier +Xi(/3_,3)||2
i=1

1 n
= = DIl £ 7o oD
i=1

and
o= Znu,n /T + 07 +0,(1). (18)

Let& = ||lwl|?/T — ||Q'w;||?/(T — 1). It holds that E(&;) = 0 and
EE?D) = 2(6)?/IT(T — D]. It is noteworthy that {&} is an i.i.d.
sequence. By (14), (18) and the central limit theorem, we can show
that

1 &
f(01u UOu z + % ;Sz + Op(])

—q 0f +N(0, 2(0)*/[T(T — D).

Note that g, is a consistent estimator of 5,2 under both Hy' and Hy'.
Following Slutsky’s theorem, we can show thatT,, —¢4 012 [0.5T(T—
DI1V?/o2 +N(0,1). O

Proof of Corollary 1. Notice thaty; = X; B + ity + u;, and then

n 1 q
p1 = <Z X;Xi) Zxﬁi =B+ vin + von,
i=1 i=1

S 1 o o1
where vy, = (XL XX:) YL Xirand vy, = (X1, ,X,)
>, X(;. From (16) and (17), we can show that n'/4v;, = 2
Q'tr + 0,(1), vy = 0,(n" /%), and

1 &K~~~
7 DIV = Xl =
i=1

1 &~ - -
G DRI + ity = Xivanll®) + 0p(1)
i=1

1 &~ o ~ ~
7 Z Wi + Fitr — Xivin — Xivou|®
i=1

1< R
- = D lwl? + Tof — 2552t + 0p(1).
i=1
Together with (14), it holds that
~ ~ 1 _
Jn@E? —362) = of — TR Q'+ — Zs, +0,(1)

R E Qg
+N(0,2(a)*/[T(T — D),

—>d012—T

where {£;} are defined as in the proof of Theorem 1. Following
Slutsky’s theorem again, we finish the proof. O

Proof of Corollary 2. By Assumption (A3), it can be shown that

NV i = 0p(1), AL g = 0,p(1) and n/4 T
wiXi = Op(1), and they imply that

n n
n~'/* Z [l = 0p(1) and n~*/* Z WiXi = 0p(1).
i=1 i=1
Together with (17), by a method similar to (18), we can show that

CHE Z luill?/T + o + 0p(D).

Following the proof of Theorem 1, we finish the proof. O

Proof of Theorem 2. It can be shown that, by (13),

TG XP)
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where ¢, is a (T — 1)-dimensional normal random vector with
mean zero and variance matrix It_; — aljz Ys. It holds that

_ 1 2 1 / 2 _
E(w) = TE(”ui” ) — ﬁE(HQ u;||“u;) =0,

where & = |lw]|?/T — ||Q'w;|>/(T — 1) is defined as in the proof
of Theorem 1,and n="2 Y"1 | & —4,/E&? - ¢1. Hence, when {u;} is

independent of {X;}, {; and ¢, are independent.
We further have that
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Note that the null hypothesis Hg corresponds to the case with
o, = 0. Hence, we finish the proof. O
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Proof of Corollary 3. Denote ¥y = E(X/QQ'X;) = E(XP+X;). By

1T

(13) and the condition that Q’E(X;) = 0, we have that ¥y = X,
and

— 1 &
-8 =% | =) Xy
NCCEN) [ ﬁ; u
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= 0p(1). (21)
It holds that
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Notice that 5 = 0,(n~'/?). Thus,
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By (21)-(23), we can show that

D IQ i — XiB)I? = Y 11Q'vi — XiB) — QXi(B2 — B
i=1 i=1

= 1Q i — XB)I? + 0p(1).
i=1

Together with (20) and following the proof of Theorem 2, we finish
the proof. O

Proof of Theorem 3. We first show the result of test statistic T,,.
Note thaty; = atr +Xi8 + pitr +n+u;. By (13), (15), Assumptions
(A1), (A2) and (A4), it holds that

_ 1<, ~
V@ =) = =3 64X V(B — B)
i=1
1< , 1 &,
IZMI @lrﬂ'f‘ ﬁ;lTui
= 0p(1), (24)
and
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+X(ﬂ B) + ity +n +
onuln +To? + 0,(1).

Thus,
1 n
=~ D _IwlP/T + o7 + 0p(D).
i=1

Together with (14) and following the proof of Theorem 1, we derive
the asymptotic distribution of T,,,;.

LetX =n'Y " X,y =n"'Y" yanda = n 'Y " u

For quantity f; in test statistic T, ;, we have that

n -1 n
By = <n1 > OXXi+ X/QQ/)'() (n1 > OXyi+ X’QQ’)’/)
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i=1

i=1

512+ 0,(1),

and

x [n—l > X + XQQ' (@ + n)} =0,(n""?),
i=1

see also the proof of Corollary 1. By a method similar to (24), it can
be shown that

n
=)' )G —XiBs) = o + Tin + Tan,
i=1

where
1 n
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= T '"GEX) 25 "2t + 0,(1),
and
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Together with (14) and following the proof of Theorem 1, we derive
the asymptotic distribution of T mﬂ 0O

— T84 0,(1).
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Higher order moments of the idiosyncratic error and the individual ef-
fect. For k > 2, denote by y} the kth order moment of the idiosyn-
cratic error u;, and by yk“ the kth order moment of the individual
effect ;. We next attempt to construct the estimators of ', which
are robust to the presence of both individual and time effects, and
the estimators of y;*, which are robust to the presence of the time
effect. Note that ;' = o2.

The higher order moments of the idiosyncratic error y;' are
estimated based on the residuals from model (5). For k = 2, we
can use 6@, in (7) to estimate y5', i.e. P3' = Gg,.

Denote g1 = T~ "%11,Q = (@2, 43, ---,q1)- @t = (qu, G5

coanfor1 1= Toaw = (L, XL, @) 0 = 3n+2)/n,

an = (XL Xlaf) (= DO? = 3n + 3)/r’, and a5, =
305" (n — 1)2(T — 1)/n? — 3.1t holds that

rr 7 r/ T ! 7

E|Y (@u)’|=E (Zqi‘“) @)
| =2 ] L \ =2 ]

and
rr 7 r/ T ! 7

E|Y (qun*|=E (Zq?“) @) | = aanys' + a2 (v3)%,
I= L

where a®¢ = ¢ ® - --

u
= aln)’g )

® a with positive integer k, and ® is the

k
Kronecker product. We then can estimate the third- and fourth-
order moments of u; by

=, - Z(Zq) —XiB)®,

and

?::az_nl'Z(Zq ) —Xip)®* — a3 ()%,

where 8 is defined as in (6). Note that the quantities, Y"1, 3"1_
@ Y, S, qhand Y[, ¢®* with k = 2, 3, and 4, all depend
on the matrix Q.

Note that, by the orthogonal transformation, the information of
i in model (3) is concentrated in model (4). We then can make
use of model (4) only to estimate the higher order moments of the
individual effect y,( Suppose {u;} is independent of {u;}, and then
we can separate the moments of u; from those of Tfi; + ¢ru;, i.e.
E(TR)? = E(T[Li + trti)? — E(urtiy)?,
E(TE)® = E(TIi + )’ — E(ir)°
and
E(TR)* = E(TTL + ert)* — EQurtiy)® — 6E(T7L) E (er)?.

Similar to the counterpart of u;;, we can estimate the higher order
moments of the individual effect as follows,

1T~ o~ 1
= WY - GXiB)? - Ty
n i=1
1< ~~
7=b =Y G — g Xip) - T,
i=1
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= -1 e 4
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where by, = T%(n — 1)/n, by,
T4(n — 1)(n*> — 3n + 3)/n, ba, 6T 'n(n — 1)/(n* — 3n +
3),bs, = T73[3(2n — 3) + 3n(n — 1)(T — D]/(n* — 3n + 3),
and bg, = 3(2n — 3)/(n?> — 3n + 3).

Denote

!/
1 T T
1 (Z qim) cov(uf?, u®?) (Z qi@’“) :
=2 1=2

T3(n? — 3n + 2)/n%, by, =

1
K1 = T T s
> > dg
1=2t=1
Ky = —6[k1(T — 1) — 1]y,
2= 3 T 6T = D),

6
K4 T Vzu Y2

T T T ek
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(7« is a T¥-dimensional vector with all elements equal to one, and
k = 2,3 and 4. Let
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2 T
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By a method similar to Wu and Zhu (2010), for k = 2, 3 and 4,
we can show that, if E(u2¥) < oo and E||X;||** < oo, then

\/E(Vk — Yk ¢) —>qN(0, %)

asn — oo and, if {u;} is further independent of {u; } and {X;} with
E(u?) < oo, then

V@l =yl —=aN©, %)

as n — oo. The proof is omitted to save the space, and is available
upon request.

Note that the asymptotic results are based on large n and fixed
T, and we do not have enough information to obtain a consistent
estimation of the higher order moments of 7;.

We sometimes may be interested in the skewness and kurto-
sis, instead of the third and the fourth order moments, for asym-
metry and heavy tails. Note that the skewness is y3/(y»)%? and
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the kurtosis is y4/(y2)?> — 3. By the Delta method (van der Vaart,
1998, Chapter 3), it is easy to derive the asymptotic normalities of
the skewness and kurtosis estimators based on .

For the matrix Q in the above estimators and asymptotic vari-
ances, we suggest to use Q = (q2,93,...,qr) and q¢ = {(I —

DI (D) — 5::]1 Ir(k)}/«/1(I — 1), where 2 < | < T and Iy (k) stands
for the kth column vector of the identity matrix Ir. It holds that, un-

der this value of Q, Y"1, >°1_, ¢4 = Y1, (I — 2)//IT— 1) and

S S g =T — 1+ 3,3 — 2l)/(P — I). We have tried
some different values of Q, and the results are similar. O
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