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a b s t r a c t

This paper proposes two Hausman-type tests respectively for individual and time effects in a two-way
error component regression model by comparing estimators of the variance of the idiosyncratic error
at different robust levels. They are both robust to the presence of the other effect, and the test for the
individual effect has a larger asymptotic power than the corresponding ANOVA F test when the effects are
correlated with covariates. Tests jointly for both effects are also discussed. Monte Carlo evidence shows
their good size properties and better power properties than competing tests, and the application to the
crime rate study gives further support.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Consider the two-way error component regression model,

yit = α + X ′

itβ + µi + ηt + uit ,

i = 1, 2, . . . , n, t = 1, 2, . . . , T , (1)

where Xit is the p-dimensional vector of covariates, α is a scalar, β
is the vector of coefficients of covariates, and uit corresponds to the
idiosyncratic error. The individual effect µi and the time effect ηt
can capture the heterogeneity of individuals and time points, and
hence model (1) is able to better explain many real data, see Hsiao
(2003), Wooldridge (2002) and Baltagi (2008). It is an important
topic in this literature to test for the existence of the individual
effect and the time effect since their involvements, if unnecessary,
will make the inference complicated and even inefficient when T
or n is fixed.

The Lagrange multiplier (LM) test has been widely discussed
in this literature since Breusch and Pagan (1980). Honda (1985)
derived two uniformly most powerful one-sided tests by modify-
ing the test statistics in Breusch and Pagan (1980). These tests are
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based on the one-way error component models, i.e. the null hy-
potheses correspond to the case without any effect, and the sizes
may be distorted due to the presence of the time (individual) ef-
fect when the individual (time) effect is tested. Bera et al. (2001)
considered LM tests for the individual effect in the presence of se-
rial correlation in the idiosyncratic error, and they are also based
on the one-way error component model. Baltagi et al. (1992) pro-
posed some LM tests based on the more general two-way error
component model (1), and they are robust to the presence of the
redundant effect since its variance is treated as a parameter and
estimated from the data. Such robustness depends on the reliabil-
ity of the estimated variances of the redundant effect and, for this
reason, neither n or T can be too small in Baltagi et al. (1992). Sec-
ondly, the construction of the aforementioned LM tests needs the
assumption of normality and independence among the covariates,
effects and the idiosyncratic error. They may still be valid when
the assumption of normality is relaxed, see Honda (1985) and Balt-
agi et al. (1992). However, when the covariates are correlated with
the individual effect and/or the time effect (Cornwell and Trum-
bull, 1994), the commonly used feasible generalized least squares
(GLS) estimation for the coefficients β is biased (Hausman, 1978),
and these tests are also expected to be biased.

This paper makes use of two transformations on model (1) to
wipe out respectively these two effects: the centering for the time
effect as in Baltagi (2008) and an orthogonal transformation for the
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individual effect as in Wu and Zhu (2010). Based on these trans-
formed models, we can work out three different estimators of the
variance of the idiosyncratic error, and they are consistent respec-
tively under the presence of the time effect only, the individual
effect only and both effects. Following the idea of Hausman’s spec-
ification test (Hausman, 1978), we can construct two tests, one for
the individual effect in Section 2 and the other for the time effect
in Section 3. As in Baltagi et al. (1992), these two proposed tests
are robust to the presence of one effect when the other is tested,
while robustness here is achieved by employing the corresponding
transformation to difference out the redundant effect. This mech-
anism makes sure that the tests can be applied to more general
cases than random effects such as the fixed effect and the case that
these two effects are random but correlated with the covariates.
We also demonstrate that the commonly used F tests in the anal-
ysis of covariance (ANOVA F tests) are asymptotically equivalent
to variations of our tests. When the covariates are correlated with
the effects, comparing with the corresponding ANOVA F test, the
proposed test for the individual effect is shown to be asymptoti-
cally more powerful, while that for the time effect has the same
asymptotic power.

Similarly, we also construct a Hausman-type test for individual
and time effects jointly in Section 4, however, it is less powerful
in detecting the existence of the time effect asymptotically. Fortu-
nately, these two proposed test statistics in Sections 2 and 3 are
shown to be asymptotically independent when the idiosyncratic
error is independent of the covariates. This makes it convenient to
combine them to jointly check the presence of both individual and
time effects. As an example, we give a combined test in Section 4
with the asymptotic distribution under the null hypothesis being a
mixed chi-square distribution as in Baltagi et al. (1992).

Monte Carlo evidence in Section 5 shows that the proposed
tests have good size properties and better power properties than
competing tests such as those in Baltagi et al. (1992) when the
covariates are correlated with the effects. We apply our tests to
the crime rate study in Section 6, and show that our tests are more
informative about the existence of county heterogeneity and time
heterogeneity of the crime rate than the existing tests. A short
discussion is given in Section 7. Proofs of theorems and corollaries
are given in the Appendix. Estimators and their asymptotic
normalities of the higher order moments of the idiosyncratic error
and the individual effect are also presented in the Appendix.

2. Test for the individual effect

Let yi = (yi1, yi2, . . . , yiT )′,Xi = (Xi1, Xi2, . . . , XiT )
′,ui = (ui1,

ui2, . . . , uiT )
′, η = (η1, η2, . . . , ηT )

′, and ιT be a T -dimensional
vector with all elements equal to one. Model (1) can be rewritten
into the vector form,

yi = αιT + Xiβ + µiιT + η + ui, i = 1, . . . , n, (2)

where the idiosyncratic errors {uit} are independent and identi-
cally distributed (i.i.d.) across individuals and time points, {Xi} are
i.i.d. across individuals, and E(Xituis) = 0 for s ≥ t , i.e. covari-
ates Xit are predetermined. The asymptotic results in this paper are
based on the assumption that n tends to infinity and T is fixed, and
this is a commonly used setting in the literature, see Baltagi (2008).
Denote by σ 2

u the variance of the idiosyncratic error uit , and it will
play a key role in this paper.

We first consider the test for the individual effect, and it is
usually assumed to be a random variable with mean zero and
finite variance σ 2

µ. The hypotheses of the test can be formalized as
follows,

Hµ

0 : σ 2
µ = 0 vs Hµ

1 : σ 2
µ > 0.
To construct a test robust to the presence of the time effectη, we
first wipe it out by centering each term in model (2), and it results
inyi =Xiβ +µiιT +ui, i = 1, . . . , n, (3)

where yi = yi − n−1n
j=1 yj,Xi = Xi − n−1n

j=1 Xj,µi =

µi − n−1n
j=1 µj, andui = ui − n−1n

j=1 uj. Note that ∥ιT∥ =

T 1/2, where ∥ · ∥ is the Euclidean norm. Then we can find a
matrix Q such that (T−1/2ιT ,Q ) is a T × T orthogonal matrix.
Conducting an orthogonal transformation on model (3) with the
matrix (T−1/2ιT ,Q ), we have that

ι′Tyi = ι′T
Xiβ + Tµi + ι′Tui, (4)

Q ′yi = Q ′Xiβ + Q ′ui, (5)

where i = 1, . . . , n. The individual effect µi is only present in
model (4), which is a single equation while model (5) is a (T − 1)-
dimensional equation. It is then reasonable to usemodel (5) only to
obtain a consistent estimator ofσ 2

u . It holds thatQQ
′
= IT−T−1ιT ι

′

T
and Q ′Q = IT−1, where Im is anm-dimensional identity matrix.

Consider the ordinary least squares (OLS) estimation for model
(5),

β = argmin
β

n
i=1

∥ Q ′yi − Q ′Xiβ ∥
2

=


n

i=1

X′

iP
⊥

ιT
Xi

−1 n
i=1

X′

iP
⊥

ιT
yi, (6)

where P⊥
ιT

= QQ ′
= IT − T−1ιT ι

′

T is independent of the matrix
Q . Note that the above estimator is the same as the so-called
Within estimator in Baltagi (2008). Denote q1 = T−1/2ιT ,Q =

(q2, q3, . . . , qT ) and ql = (q1l, q2l, . . . , qTl)′ for 1 ≤ l ≤ T . It holds
that

E∥Q ′ui∥
2

= E


T

l=2

(q′

lui)
2


= anσ 2

u ,

and then, from model (5), we can estimate the variance of the
idiosyncratic error uit by

σ 2
0u = a−1

n ·
1
n

n
i=1

∥Q ′(yi −Xiβ)∥2

= a−1
n ·

1
n

n
i=1

(yi −Xiβ)′P⊥

ιT
(yi −Xiβ), (7)

where an = (T −1)(n−1)/n. Under some regularity conditions, it
holds that, regardless of the presence of individual and time effects,
√
n(β − β) →d N(0, Σ−1

1 Σ2Σ
−1
1 )

as n → ∞, and σ 2
0u is consistent, where Σ1 = E(X′

iP
⊥
ιT
Xi) −

E(X′

i)P
⊥
ιT
E(Xi) and Σ2 = E[(Xi − EXi)

′P⊥
ιT
uiu′

iP
⊥
ιT

(Xi − EXi)].
Under the null hypothesis of σ 2

µ = 0, it holds that µ1 = · · · =

µn = 0, and model (3) reduces toyi = Xiβ +ui. This leads to
another estimator of σ 2

u ,

σ 2
1u = b−1

n ·
1
n

n
i=1

∥yi −Xiβ∥
2

since E∥ui∥
2

= bnσ 2
u with bn = T (n − 1)/n, and β is given as

in (6). Note that, under Hµ

1 ,σ 2
1u is no longer consistent, however,σ 2

0u is still consistent. Hence, a statistically significant difference
betweenσ 2

1u andσ 2
0u can be interpreted as evidence against the null
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hypothesis Hµ

0 . By following the idea of the Hausman specification
test (Hausman, 1978), we can construct a test statistic as follows,

Tµ = Φ−1/2
n ·

√
n(σ 2

1u −σ 2
0u)

= [0.5T (T − 1)]1/2
√
n
σ 2

1uσ 2
0u

− 1


,

where the scalar Φn = 2(σ 2
0u)

2/[T (T − 1)] is used to standardize
the statistic.

To study the asymptotic behavior of the proposed test Tµ, we
further assume that

(A1) {µi} are i.i.d. withmean zero and varianceσ 2
µ = n−1/2σ 2

1 with
a constant σ 2

1 ≥ 0, and
(A2) E(µiui) = 0, n1/2E(µ2

i ∥ui∥
2) < ∞, and n1/4E(µiXi) = Ω .

Assumption (A1) gives the local alternatives, and the case with
σ 2
1 = 0 corresponds to the null hypothesis Hµ

0 . Assumption (A2)
further restricts the distribution of µi such that we can study the
asymptotic power under the possible correlations between the
individual effect and covariates. Denote by {µ∗

i } an i.i.d. sequence
with E(µ∗

i ) = 0, var(µ∗

i ) = σ 2
1 , E(µ∗

i ui) = 0, E(µ∗

i ∥ui∥)
2 < ∞

and E(µ∗

i Xi) = Ω . Let µi = n−1/4µ∗

i for 1 ≤ i ≤ n, and then {µi}

will satisfy both Assumptions (A1) and (A2).

Theorem 1. Suppose that E(u4
it) < ∞, E∥Xi∥

4 < ∞, |Σ1| > 0 and
cov(X′

iιT ,u
′

iιT ) = 0. If Assumptions (A1) and (A2) hold, then

Tµ →d σ 2
1 [0.5T (T − 1)]1/2/σ 2

u + ζ1

as n → ∞, where ζ1 follows the standard normal distribution.

From the above theorem, we can refer to the standard normal
distribution for the critical values or p-values, and the test Tµ is
nontrivial. Note that the quantity E(u4

it) is not present in the above
theorem. Actually, it is canceled out in the derivation, however, the
conditions of E(u4

it) < ∞ and E∥Xi∥
4 < ∞ are still needed tomake

some quantities in the derivation meaningful.
Besides the quantity σ 2

1u, we may consider another consistent
estimator of σ 2

u under Hµ

0 ,

σ 2
1u = b−1

n ·
1
n

n
i=1

∥yi −Xiβ1∥
2,

whereβ1 = argminβ

n
i=1 ∥yi −Xiβ∥

2. This results in a new test
statistic

T ∗

µ = [0.5T (T − 1)]1/2
√
n
σ 2

1uσ 2
0u

− 1


= c1n · Fµ − d1n,

where c1n = [0.5nT (T −1)]1/2(1− T−1)(n−1)/[(n−1)(T −1)−

p], d1n = [0.5nT (T − 1)]1/2/T and

Fµ =

n
i=1

{∥yi −Xiβ1∥
2
− ∥ Q ′(yi −Xiβ) ∥

2
}/(n − 1)

n
i=1

∥ Q ′(yi −Xiβ) ∥
2 /[(n − 1)(T − 1) − p]

.

Notice that c1n and d1n are two positive constants, and the Fµ

statistic in fact is the ANOVA F test statistic. The ANOVA F test uses
the critical values that are quantiles from the F distribution with
n−1 and (n−1)(T −1)−p degrees of freedom, and this is justified
under the assumption that uit is normally distributed, see Baltagi
(2008). Let Σ3 = var(Xi) = E[(Xi − EXi)

′(Xi − EXi)].

Corollary 1. If |Σ3| > 0 and the conditions of Theorem 1 hold, then

T ∗

µ →d(σ
2
1 − T−1ι′TΩΣ−1

3 Ω ′ιT )[0.5T (T − 1)]1/2/σ 2
u + ζ1

as n → ∞, where Ω and ζ1 are defined as in Assumption (A2)
and Theorem 1, respectively.
Because Ω = 0 as σ 2
1 = 0 and T ∗

µ is simply an affine trans-
formation of Fµ, a test based on T ∗

µ and a critical value from the
standard normal distribution is asymptotically equivalent to the
ANOVA F test. It can be shown that 0 ≤ T−1ι′TΩΣ−1

3 Ω ′ιT ≤ σ 2
1 ,

and the quantity T−1ι′TΩΣ−1
3 Ω ′ιT equals to zero if and only if

cov(µi, ι
′

TXi) = n−1/4ι′TΩ = 0. We may conclude that our test Tµ

will be asymptoticallymore powerful than the ANOVA F test when
the individual effect is correlated with covariates, see the simula-
tion results in Section 5 for more evidences. Note that, unlike T ∗

µ,
the test statistic Tµ does not follow an F distribution up to an affine
transformation.

Many efforts recently have been spent on the heteroscedasticity
of individual and time effects, i.e. the variances of {µi} and {ηt} are
all different, see Baltagi et al. (2006, 2010) and Montes-Roja and
Sosa-Escudero (2011). Note that the heteroscedasticity of {ηt} has
no effect on the results in this section. For the heteroscedasticity of
{µi}, the null hypothesis can be set to

Hµ

0 : var(µ1) = · · · = var(µn) = 0,

and Assumptions (A1) and (A2) are replaced by a new one as
follows.

(A3) Individual effects {µi} are independent random variables
with E(µi) = 0, σ 2

1 = limn→∞ n−1/2n
i=1 var(µi) <

∞, E(µiui) = 0, n−1/2n
i=1 E(µ2

i ∥ui∥
2) = O(1) and

n−3/4n
i=1 E(µiXi) = O(1).

Corollary 2. Suppose that E(u4
it) < ∞, E∥Xi∥

4 < ∞, |Σ1| > 0 and
cov(X′

iιT ,u
′

iιT ) = 0. If Assumption (A3) holds, then

Tµ →d σ 2
1 [0.5T (T − 1)]1/2/σ 2

u + ζ1

as n → ∞, where ζ1 is defined as in Theorem 1.

When the null hypothesis Hµ

0 is accepted, we may employ
model (3) to estimate the coefficients β , and it results inβ1. It can
be shown that the estimatorβ1 is asymptotically as efficient as the
OLS estimator of model (2) with the absence of both individual and
time effects.

3. Test for the time effect

Suppose that {ηt} are random variables with mean zero and
finite variance. To take into account the heteroscedasticity of {ηt},
the test for the time effect can be formalized as follows,

Hη

0 : var(η1) = · · · = var(ηT ) = 0 vs

Hη

1 : at least one of them is nonzero.

Similar to the case for the individual effect, we first wipe out the
individual effect µi by applying the orthogonal transformation on
model (2) directly, and it results in

Q ′yi = Q ′Xiβ + Q ′η + Q ′ui (8)

and ι′Tyi = Tα+ι′TXiβ+Tµi+ι′Tη+ι′Tui, where i = 1, . . . , n. Under
the null hypothesis Hη

0 , model (8) reduces to Q ′yi = Q ′Xiβ +Q ′ui,
and we can alternatively estimate the variance of the idiosyncratic
error uit by

σ 2
2u =

1
T − 1

·
1
n

n
i=1

∥Q ′(yi − Xiβ)∥2

=
1

T − 1
·
1
n

n
i=1

(yi − Xiβ)′P⊥

ιT
(yi − Xiβ)

since E∥Q ′ui∥
2

= (T − 1)σ 2
u , and β is given as in (6). Notice

that, underHη

1 ,σ 2
2u is inconsistent, however,σ 2

0u in (7) is consistent.
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Based on the difference between these two estimators, we can
construct a test statistic as follows,

Tη =
T − 1σ 2

0u
· n(σ 2

2u −σ 2
0u) + (T − 1).

To study the asymptotic behavior of Tη , we give the condition
on η as follows.

(A4) η = n−1/2ζ∗, where ζ∗ a T -dimensional random vector with
mean zero and σ 2

2 = E∥ζ∗
∥
2 < ∞.

The case with σ 2
2 = 0 corresponds to the null hypothesis Hη

0 , and
random vector ζ∗ may be correlated with covariates and even the
idiosyncratic error. Let Σ4 = Q ′E[uiu′

iP
⊥
ιT

(Xi − EXi)]Σ
−1
1 (EX′

i)Q ,
and Σ5 = Σ4 + Σ ′

4 − Q ′E(Xi)Σ
−1
1 Σ2Σ

−1
1 E(X′

i)Q .

Theorem 2. Suppose that E(u2
it) < ∞, E∥Xi∥

2 < ∞, |Σ1| > 0 and
cov(X′

iιT ,u
′

iιT ) = 0. If Assumption (A4) holds, then

Tη →d ∥σ−1
u Q ′ζ∗

+ ζ2∥
2

as n → ∞, where ζ2 is a (T −1)-dimensional normal random vector
with mean zero and variance matrix IT−1 − σ−2

u Σ5.
If {ui} is further assumed to be independent of {Xi}, then the ran-

dom vector ζ2 is independent of the random variable ζ1, which is de-
fined as in Theorem 1.

The value of Q is involved in the asymptotic distribution of test
Tη . When Q ′E(Xi) = 0, i.e. E(Xit) is independent of t , it holds that
Σ5 = 0, and the asymptotic distribution of Tη under the null hy-
pothesis Hη

0 is just the chi-square distribution with T − 1 degrees
of freedom, χ2

T−1. In real applications, we may first center the co-
variates Xi, resulting inXi of (3), and then perform the test Tη with
p-values or critical values calculated from χ2

T−1.
Similar to the case of T ∗

µ in the previous section, we may con-
sider another test statistic for the time effect,

T ∗

η =
T − 1σ 2

0u
· n(σ 2

2u −σ 2
0u) + (T − 1) =

T − 1
(n − 1)(T − 1) − p

Fη,

where

σ 2
2u =

1
T − 1

·
1
n

n
i=1

∥Q ′(yi − Xiβ2)∥
2,

β2 = argmin
β

n
i=1

∥Q ′(yi − Xiβ)∥2,

and

Fη =

n
i=1

{∥Q ′(yi − Xiβ2)∥
2
− ∥Q ′(yi −Xiβ)∥2

}/(T − 1)

n
i=1

∥Q ′(yi −Xiβ)∥2/[(n − 1)(T − 1) − p]
.

Under Hη

0 , the ANOVA F test statistic Fη follows the F distribution
with T − 1 and (n − 1)(T − 1) − p degrees of freedom when the
idiosyncratic error uit is normally distributed, see Baltagi (2008).

Corollary 3. Suppose that E(u2
it) < ∞, E∥Xi∥

2 < ∞, |Σ1| >

0, cov(X′

iιT ,u
′

iιT ) = 0 and Q ′E(Xi) = 0. If Assumption (A4) holds,
then

T ∗

η →d ∥σ−1
u Q ′ζ∗

+ ζ2∥
2

as n → ∞, where ζ2 is defined as in Theorem 2.
From the above corollary, unlike the counterpart in the previous
section, the test Tη is asymptotically not more powerful than, the
ANOVA F test.

When the time effect is fixed, i.e. η1, . . . , ηT are non-random
with

T
t=1 ηt = 0,we assume that ζ∗ is a constant vector, and then

Theorem 2 still holds. When the null hypothesis of Hη

0 is accepted,
we can consider the feasible GLS estimator of the coefficients β ,
and it is asymptotically efficient regardless of the presence of the
individual effect, see Baltagi (2008).

4. Test jointly for both individual and time effects

Besides these tests in the previous two sections, we sometimes
are interested in testing for the presence of individual and time
effects jointly. The hypotheses can be formalized as follows,

Hµη

0 : σ 2
µ = var(η1) = · · · = var(ηT ) = 0 vs

Hµη

1 : at least one of them is nonzero.

Under Hµη

0 , model (2) reduces to yi = αιT + Xiβ + ui, and we
may consider an estimator of σ 2

u as follows,

σ 2
3u = (nT )−1

n
i=1

∥yi −αιT − Xiβ∥
2,

where E∥ui∥
2

= Tσ 2
u ,β is given as in (6), andα = (nT )−1n

i=1
ι′T (yi −Xiβ). Note thatα andσ 2

3u are consistent only under the null
hypothesis Hµη

0 . Similarly, we can construct a Hausman-type test
by comparingσ 2

3u withσ 2
0u in (7), and it results in

Tµη1 = [0.5T (T − 1)]1/2
√
n
σ 2

3uσ 2
0u

− 1


.

Let (α3,β3) = argminα,β

n
i=1 ∥yi − αιT − Xiβ∥

2, and σ 2
3u =

(nT )−1n
i=1 ∥yi −α3ιT − Xiβ3∥

2. As in the previous two sections,
we may consider another test statistic

T ∗

µη1 = [0.5T (T − 1)]1/2
√
n
σ 2

3uσ 2
0u

− 1


= c2n · Fµη − d2n,

where c2n = [0.5nT (T −1)]1/2(1−T−1)(1−n−1)(n+T −2)/[(n−

1)(T − 1) − p], d2n = [0.5nT (T − 1)]1/2(T + n − 1)/(Tn) and

Fµη =

n
i=1

{∥yi −αιT − Xiβ∥
2
− ∥Q ′(yi −Xiβ)∥2

}/(n + T − 2)

n
i=1

∥Q ′(yi −Xiβ)∥2/[(n − 1)(T − 1) − p]
.

When the idiosyncratic error uit is normally distributed, the
ANOVA F test statistic Fµη follows the F distribution with n+T −2
and (n − 1)(T − 1) − p degrees of freedom under Hµη

0 , see Baltagi
(2008). Let Σ6 = Σ3 + E(X′

i)P
⊥
ιT
E(Xi) and

δ = T−2
[ι′TE(Xi)Σ

−1
6 Ω ′ιT ]

2

+ T−1ι′TΩΣ−1
6 [2Σ6 − E(X′

iXi)]Σ
−1
6 Ω ′ιT .

Theorem 3. Suppose that E(u4
it) < ∞, E∥Xi∥

4 < ∞, |Σ1| > 0,
|Σ6| > 0 and cov(X′

iιT ,u
′

iιT ) = 0. If Assumptions (A1), (A2) and
(A4) hold, then

Tµη1 →d σ 2
1 [0.5T (T − 1)]1/2/σ 2

u + ζ1

and

T ∗

µη1 →d(σ
2
1 − δ)[0.5T (T − 1)]1/2/σ 2

u + ζ1

as n → ∞, where Ω and ζ1 are defined as in Theorem 1.
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For both tests Tµη1 and T ∗

µη1, we can refer to the standard normal
distribution for critical values and p-values since Ω = 0 and δ = 0
as σ 2

1 = 0. It holds that 0 ≤ δ ≤ σ 2
1 , and quantity δ equals to zero

if cov(µi, ι
′

TXi) = n−1/4ι′TΩ = 0.
Moreover, these two tests in Theorem 3 fail asymptotically to

detect the presence of the time effect in Assumption (A4), i.e. they
suffer asymptotic loss in the power comparingwith the test for the
time effect Tη in the previous section. Note that, from Theorems 1
and 2,

√
n(σ 2

1u − σ 2
0u) = Op(1) and n(σ 2

2u − σ 2
0u) = Op(1). We

may argue that the test for the time effect can detect smaller de-
parture from the null hypothesis than that for the individual effect,
and such sensitivity will be masked in the testing for the null hy-
pothesis Hµη

0 .
From Theorem 2, test statistics Tµ and Tη are asymptotically

independent if {ui} is independent of {Xi}, and then we may
achieve a more powerful test for Hµη

0 by combining these two
tests. A direct way is to employ the Bonferroni method to give the
rejection region,

{Tµ > zα/2 or Tη > χ2
α/2,T−1},

where α is a predetermined significance level, and zα/2 and
χ2

α/2,T−1 are respectively the 100(1 − α/2)th percentiles of the
standard normal distribution and the χ2

T−1 distribution.
We next introduce a test with test statistic

Tµη2 = ωT 2
µ + (1 − ω)Tη,

where theweightω ∈ [0, 1] canbe specified bypractitioners. From
Theorems 1 and 2, we have that

Tµη2 →d ω|σ 2
1 [0.5T (T − 1)]1/2/σ 2

u + ζ1|
2

+ (1 − ω)∥σ−1
u Q ′ζ∗

+ ζ2∥
2

as n → ∞. Under Hµη

0 , if Q ′E(Xi) = 0 and {ui} is independent of
{Xi}, then

Tµη2 →d ωχ2
1 + (1 − ω)χ2

T−1 (9)

as n → ∞. Sometimes we may have no preference about the
weight in Tµη2. It can be simply set to ω = 0.5, and the asymptotic
distribution of Tµη2 under Hµη

0 is just 0.5χ2
T . When ω = 1, the test

statistic Tµη2 will reduce to T 2
µ, which corresponds to the two-sided

test of Tµ and is then less powerful. Actually, there are still many
other choices besides Tµη2, however, their asymptotic distribution
under the null hypothesis may not be as simple as the mixed chi-
square distribution in (9).

When the null hypothesis Hµη

0 is accepted, the commonly used
OLS estimator of the coefficients β will be efficient. Otherwise, we
have to consider its estimation based on the general two-way error
component model (2), and one can be referred to Chapter 3 of
Baltagi (2008).

5. Simulation studies

We conduct four simulation experiments in this section to
study the finite-sample performance of the proposed tests and
the estimators for higher order moments of the idiosyncratic error
and the individual effect. All simulation results are based on 1000
replications and the significance level is set to 0.05.

The first experiment is for the test Tµ. Six currently used tests for
the individual effect are also calculated for the sake of comparison,
and they are a test in Breusch and Pagan (1980) (hence BPµ test),
a test in Honda (1985) (Hµ), a modified two-sided test (BSY1) and
a modified one-sided test (BSY2) in Bera et al. (2001), a test robust
to the time effect in Baltagi et al. (1992) (BCLµ) and the ANOVA F
test (Fµ). The abbreviations are similar for the other two types of
tests in this section. The data generating process is

yit = 0.5 + X (1)
it + 2X (2)

it + µi + ηt + uit , (10)

where X (1)
it , X (2)

it , µi and ηt follow the normal distributions with
mean zero, var(X (1)

it ) = var(X (2)
it ) = 1, var(µi) = σ 2

µ, var(ηt) =

σ 2
η , corr(X

(1)
it , µi) = ρ, and uit follows the standard normal distri-

bution, N(0, 1), or
√
0.5(χ2

1 − 1). When ρ ≠ 0, X (1)
it and X (1)

is are
also correlated for t ≠ s, and then we further set corr(X (1)

it , X (1)
is ) =

ρ2. Note that σµ = 0 or >0 corresponds respectively to the size
or the power, and ση = 0 or >0 to the absence or the pres-
ence of the time effect. Let X(1)

i = (X (1)
i1 , . . . , X (1)

iT )′. Sequences
{X(1)

i }, {X (2)
it }, {µi}, {ηt} and {uit} are set to be i.i.d., and are inde-

pendent of each other except for {X(1)
i } and {µi} with ρ ≠ 0. We

check the performance of the test Tµ under three situations: (i) the
standard setting, i.e. ρ = 0 and uit follows N(0, 1), (ii) the non-
normal setting, i.e. ρ = 0 and uit follows

√
0.5(χ2

1 − 1), and (iii)
the correlated setting, i.e. ρ > 0 and uit follows N(0, 1).

For the standard setting, we set the sample sizes (n, T ) =

(100, 5), (100, 10) or (200, 10), and Table 1 lists the empirical sizes
and powers of the test Tµ and other six tests for the individual
effect. When the time effect is present, the sizes of four tests BPµ,
BSY1, Hµ and BSY2 are all distorted, where the first two are too
sensitive while the last two are too conservative. This is consistent
with our expectation since these four tests are all based on the
one-way error componentmodel. The test BCLµ still has acceptable
sizes even when the number of time points is as small as T = 5.
Roughly speaking, tests BCLµ, Fµ and Tµ have comparable powers.
Specifically, our test Tµ outperforms BCLµ and Fµ. The test Fµ is
more powerful than BCLµ when the time effect is absent, however,
it is less powerful when the time effect is presented. Table 2 gives
the empirical sizes and powers under the non-normal setting,
where uit follows the non-normal distribution. It can be seen that
our test Tµ is most powerful as in the standard setting, and both
BCLµ and Fµ are robust to the non-normality. We also tried the
Student’s t distributionwith five degrees of freedom, t5, for uit , and
the results are similar. For the correlated setting, we consider three
values for the correlation coefficient of X (1)

it and µi, ρ = 0.25, 0.5
and 0.75, and the sample sizes are (n, T ) = (200, 10). Table 3 gives
the empirical powers. When the value of ρ increases, the powers
of tests BCLµ and Fµ decrease substantially, however, those of our
test Tµ are not affected. Note that ρ = corr(X (1)

it , µi) = 0 as
var(µi) = σ 2

µ = 0, i.e. the correlated setting will reduce to the
standard setting in evaluating the sizes.

The second experiment is to compare the proposed test Tη with
four currently used tests for the time effect, BPη,Hη, BCLη and Fη .
We employ the data generating process (10) with ρ = 0, and the
sample sizes are set to (n, T ) = (100, 5). It is noteworthy to point
out that σµ = 0 or >0 corresponds to the absence or the presence
of the individual effect, and ση = 0 or >0 to the size or the power.
Three distributions are considered for the idiosyncratic error uit :
N(0, 1),

√
0.5(χ2

1 −1) and
√
0.6t5. Table 4 lists the empirical sizes

and powers of these five tests for the time effect. Note that BPη

and Hη are based on the one-way error component model, and the
distortion of their sizes is observed again. The three tests BCLη, Fη

and Tη have comparable powers, and the powers of our test Tη are
all greater than those of Fη although the difference is slight.We also
considered the case with the time effect and covariates correlated,
and the findings are similar to the correlated setting in the first
experiment.

The third experiment is to compare the proposed tests Tµη1 and
Tµη2 with two currently used joint tests for both individual and
time effects, BPµη and Fµη . The data generating process (10) is used
again, and we consider the standard case, ρ = 0, and the case
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Table 1
Empirical sizes and powers of test Tµ and other six tests for the individual effect
under the standard setting. The nominal rate is 5%.

ση σµ BPµ BSY1 Hµ BSY2 BCLµ Fµ Tµ

(n, T ) = (100, 5)

0.0 0.0 0.040 0.040 0.041 0.037 0.033 0.044 0.066
0.1 0.050 0.045 0.070 0.065 0.052 0.070 0.111
0.2 0.241 0.173 0.315 0.243 0.281 0.322 0.379

0.5 0.0 0.273 0.257 0.003 0.020 0.040 0.039 0.056
0.1 0.237 0.218 0.011 0.038 0.091 0.086 0.123
0.2 0.130 0.187 0.072 0.096 0.332 0.318 0.388

1.0 0.0 0.804 0.552 0.000 0.047 0.035 0.034 0.046
0.1 0.760 0.503 0.001 0.062 0.107 0.096 0.140
0.2 0.629 0.497 0.010 0.099 0.354 0.332 0.399

(n, T ) = (100, 10)

0.0 0.0 0.046 0.052 0.045 0.039 0.042 0.046 0.060
0.1 0.116 0.106 0.175 0.165 0.168 0.181 0.212
0.2 0.665 0.588 0.743 0.683 0.726 0.747 0.784

0.5 0.0 0.285 0.276 0.002 0.008 0.047 0.044 0.056
0.1 0.143 0.197 0.017 0.038 0.172 0.160 0.191
0.2 0.185 0.220 0.233 0.250 0.751 0.735 0.774

1.0 0.0 0.917 0.663 0.000 0.006 0.045 0.041 0.057
0.1 0.829 0.595 0.000 0.011 0.193 0.175 0.209
0.2 0.513 0.474 0.012 0.067 0.752 0.737 0.770

(n, T ) = (200, 10)

0.0 0.0 0.048 0.041 0.054 0.053 0.055 0.055 0.058
0.1 0.175 0.154 0.245 0.223 0.236 0.248 0.287
0.2 0.913 0.854 0.946 0.907 0.945 0.947 0.958

0.5 0.0 0.500 0.399 0.001 0.009 0.049 0.044 0.053
0.1 0.262 0.284 0.014 0.036 0.241 0.229 0.261
0.2 0.286 0.383 0.365 0.393 0.937 0.931 0.943

1.0 0.0 0.976 0.750 0.000 0.012 0.051 0.047 0.058
0.1 0.927 0.704 0.000 0.025 0.254 0.240 0.270
0.2 0.695 0.597 0.010 0.112 0.942 0.938 0.947

Table 2
Empirical sizes and powers of test Tµ and other six tests for the individual effect
under the non-normal setting. The nominal rate is 5%.

ση σµ BPµ BSY1 Hµ BSY2 BCLµ Fµ Tµ

(n, T ) = (100, 5)

0.0 0.0 0.044 0.037 0.045 0.051 0.036 0.046 0.064
0.1 0.061 0.062 0.090 0.085 0.068 0.098 0.122
0.2 0.206 0.150 0.296 0.216 0.253 0.304 0.373

0.5 0.0 0.316 0.247 0.009 0.025 0.048 0.045 0.061
0.1 0.215 0.217 0.016 0.044 0.106 0.100 0.134
0.2 0.120 0.208 0.054 0.110 0.299 0.282 0.365

1.0 0.0 0.795 0.579 0.002 0.043 0.051 0.048 0.063
0.1 0.754 0.538 0.001 0.062 0.103 0.091 0.130
0.2 0.630 0.506 0.009 0.084 0.347 0.334 0.390

(n, T ) = (100, 10)

0.0 0.0 0.045 0.042 0.046 0.044 0.045 0.048 0.061
0.1 0.106 0.104 0.158 0.155 0.144 0.158 0.192
0.2 0.622 0.545 0.721 0.648 0.706 0.726 0.764

0.5 0.0 0.278 0.260 0.003 0.011 0.054 0.045 0.062
0.1 0.152 0.197 0.022 0.034 0.164 0.159 0.186
0.2 0.176 0.226 0.227 0.242 0.768 0.744 0.783

1.0 0.0 0.912 0.664 0.000 0.007 0.045 0.040 0.054
0.1 0.831 0.631 0.000 0.021 0.161 0.146 0.176
0.2 0.516 0.474 0.015 0.075 0.785 0.769 0.808

(n, T ) = (200, 10)

0.0 0.0 0.044 0.047 0.033 0.032 0.031 0.035 0.044
0.1 0.161 0.142 0.235 0.215 0.226 0.232 0.264
0.2 0.904 0.834 0.933 0.900 0.931 0.934 0.946

0.5 0.0 0.489 0.420 0.003 0.012 0.054 0.050 0.059
0.1 0.274 0.294 0.013 0.038 0.243 0.230 0.257
0.2 0.304 0.403 0.393 0.427 0.955 0.952 0.956

1.0 0.0 0.972 0.758 0.000 0.012 0.049 0.045 0.055
0.1 0.920 0.729 0.000 0.021 0.264 0.248 0.283
0.2 0.685 0.578 0.013 0.084 0.940 0.938 0.949
Table 3
Empirical powers of test Tµ and other six tests for the individual effect under the
correlated setting. The nominal rate is 5%, and (n, T ) = (200, 10).

σµ ρ BPµ BSY1 Hµ BSY2 BCLµ Fµ Tµ

ση = 0.0

0.1 0.25 0.119 0.099 0.180 0.164 0.180 0.202 0.256
0.50 0.070 0.062 0.124 0.102 0.120 0.175 0.275
0.75 0.054 0.047 0.066 0.063 0.064 0.111 0.291

0.2 0.25 0.825 0.749 0.882 0.832 0.876 0.910 0.940
0.50 0.526 0.447 0.618 0.557 0.606 0.802 0.931
0.75 0.104 0.088 0.170 0.134 0.155 0.464 0.917

ση = 0.5

0.1 0.25 0.272 0.282 0.007 0.024 0.215 0.227 0.276
0.50 0.343 0.320 0.004 0.018 0.133 0.167 0.265
0.75 0.432 0.372 0.001 0.010 0.070 0.100 0.284

0.2 0.25 0.203 0.323 0.242 0.304 0.900 0.920 0.949
0.50 0.132 0.219 0.085 0.138 0.654 0.816 0.944
0.75 0.294 0.293 0.008 0.021 0.188 0.471 0.918

ση = 1.0

0.1 0.25 0.938 0.689 0.000 0.024 0.221 0.231 0.280
0.50 0.948 0.745 0.000 0.020 0.133 0.169 0.281
0.75 0.970 0.753 0.000 0.013 0.082 0.118 0.288

0.2 0.25 0.709 0.586 0.004 0.094 0.891 0.912 0.950
0.50 0.825 0.675 0.000 0.048 0.625 0.783 0.940
0.75 0.937 0.719 0.000 0.019 0.171 0.466 0.904

Table 4
Empirical sizes and powers of test Tη and other four tests for the time effect. The
nominal rate is 5%, and (n, T ) = (100, 5).

σµ ση BPη Hη BCLη Fη Tη

uit ∼ N(0, 1)

0.0 0.0 0.033 0.041 0.041 0.049 0.052
0.1 0.225 0.275 0.270 0.312 0.330
0.2 0.680 0.716 0.723 0.745 0.757

0.5 0.0 0.012 0.014 0.052 0.046 0.048
0.1 0.146 0.179 0.324 0.303 0.313
0.2 0.577 0.621 0.763 0.756 0.759

1.0 0.0 0.000 0.000 0.056 0.044 0.046
0.1 0.029 0.041 0.329 0.299 0.303
0.2 0.365 0.410 0.753 0.732 0.736

uit ∼
√
0.5(χ2

1 − 1)

0.0 0.0 0.018 0.026 0.028 0.039 0.043
0.1 0.230 0.277 0.276 0.320 0.332
0.2 0.669 0.708 0.697 0.732 0.741

0.5 0.0 0.007 0.013 0.058 0.051 0.053
0.1 0.137 0.171 0.339 0.316 0.331
0.2 0.589 0.629 0.762 0.751 0.756

1.0 0.0 0.001 0.001 0.063 0.053 0.056
0.1 0.025 0.046 0.366 0.338 0.342
0.2 0.359 0.398 0.785 0.768 0.771

uit ∼
√
0.6t5

0.0 0.0 0.025 0.039 0.034 0.052 0.054
0.1 0.241 0.285 0.287 0.315 0.324
0.2 0.677 0.720 0.709 0.736 0.742

0.5 0.0 0.005 0.012 0.054 0.052 0.053
0.1 0.148 0.189 0.333 0.314 0.330
0.2 0.577 0.636 0.765 0.755 0.762

1.0 0.0 0.000 0.000 0.062 0.046 0.048
0.1 0.026 0.046 0.356 0.324 0.332
0.2 0.351 0.414 0.798 0.770 0.778

with correlation, ρ = 0.5. The sample sizes are set to (n, T ) =

(100, 5), (100, 10) or (200, 10), and we fix ω = 0.5 for simplicity.
Table 5 gives the empirical sizes and powers of these four tests.
Note that the correlation happens only between the individual
effect and the covariates, and then there is no correlation when
σµ = 0. The sizes of all four tests are close to the nominal value
0.05, and our tests Tµη1 and Tµη2 are both robust to the possible
presence of correlation. Test Tµη1 is more powerful than Tµη2 as
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Table 5
Empirical sizes and powers of tests Tµη1, Tµη2 and other two joint tests for both
effects. The nominal rate is 5%.

ση σµ ρ = 0.0 ρ = 0.5
BPµη Fµη Tµη1 Tµη2 BPµη Fµη Tµη1 Tµη2

(n, T ) = (100, 5)

0.0 0.0 0.032 0.052 0.063 0.049
0.1 0.049 0.102 0.131 0.081 0.039 0.080 0.129 0.078
0.2 0.171 0.306 0.375 0.211 0.074 0.226 0.376 0.220

0.1 0.0 0.191 0.072 0.097 0.282
0.1 0.180 0.123 0.169 0.247 0.220 0.132 0.197 0.325
0.2 0.292 0.390 0.446 0.401 0.219 0.318 0.452 0.442

0.2 0.0 0.657 0.265 0.299 0.729
0.1 0.632 0.334 0.398 0.713 0.676 0.350 0.427 0.746
0.2 0.676 0.600 0.649 0.796 0.643 0.505 0.646 0.780

(n, T ) = (100, 10)

0.0 0.0 0.026 0.034 0.048 0.049
0.1 0.089 0.160 0.188 0.084 0.049 0.119 0.194 0.102
0.2 0.561 0.706 0.742 0.423 0.226 0.539 0.750 0.431

0.1 0.0 0.334 0.141 0.163 0.465
0.1 0.372 0.307 0.345 0.462 0.376 0.267 0.358 0.522
0.2 0.705 0.815 0.843 0.760 0.459 0.694 0.841 0.730

0.2 0.0 0.906 0.619 0.659 0.935
0.1 0.911 0.741 0.771 0.953 0.918 0.709 0.764 0.939
0.2 0.958 0.965 0.972 0.974 0.930 0.930 0.970 0.978

(n, T ) = (200, 10)

0.0 0.0 0.037 0.047 0.055 0.044
0.1 0.126 0.239 0.269 0.094 0.066 0.159 0.267 0.105
0.2 0.866 0.940 0.953 0.723 0.407 0.778 0.917 0.678

0.1 0.0 0.672 0.213 0.234 0.775
0.1 0.713 0.535 0.564 0.816 0.677 0.419 0.533 0.816
0.2 0.956 0.970 0.977 0.970 0.808 0.910 0.972 0.950

0.2 0.0 0.991 0.786 0.806 0.996
0.1 0.982 0.882 0.891 0.985 0.992 0.891 0.920 0.996
0.2 0.999 1.000 1.000 0.998 0.990 0.992 0.999 0.999

ση = 0, however, is less powerful as ση > 0. Note that, when
ση = 0, only the term T 2

µ in the test statistic Tµη2 can provide
the power. It is equivalent to a two-sided test of Tµ, and is less
powerful.

The fourth experiment is to study the estimators for higher or-
der moments of uit and µi in the Appendix. The data generating
process is given as in (10) with ρ = 0. We consider four pairs
of different distributions for uit and µi: (i) N(0, 1) and N(0, 1),
(ii)

√
0.75t8 andN(0, 1), (iii)

√
0.75t8 and

√
0.75t8, and (iv)N(0, 1)

and
√
0.5(χ2

1 − 1), where t8 is the Student’s t distribution with
eight degrees of freedom. The sample sizes are set to (n, T ) =

(50, 10) or (100, 10), and the corresponding estimators inWu and
Su (2010) are also calculated for the sake of comparison. The em-
pirical means and empirical standard deviations are presented in
Tables 6 and 7 respectively for the caseswith n = 50 and 100. Note
that the method in Wu and Su (2010) cannot be used to construct
the estimators of third order moments. It can be seen that our es-
timators are slightly better.

6. A real example

Cornwell and Trumbull (1994) considered an economic model
of crime for panel data on 90 counties in North Carolina from 1981
to 1987,

Rit = α + P ′

itγ + X ′

itβ + µi + ηt + uit ,

i = 1, 2, . . . , n, t = 1, 2, . . . , T ,

where Rit is the crime rate, which is an FBI index measuring the
number of crimes divided by the county population, Pit includes
deterrent variables and Xit contains variables measuring returns to
legal opportunities, see also Baltagi (2006). There are four deter-
rent variables: the probability of arrest (PA), which is measured by
Table 6
Empirical means and empirical standard deviations (in the parenthesis) of the
estimators of higher order moments by the methods in the Appendix (WL) and in
Wu and Su (2010) (WS) for four pairs of different distributions of uit and µi with
(n, T ) = (50, 10).

True value ση = 0 ση = 1
WL WS WL WS

Pair (i)

γ u
2 1.0000 1.0003

(0.0674)
1.0012
(0.0989)

1.0032
(0.0679)

1.0030
(0.0964)

γ u
3 0.0000 0.0005

(0.1902)
−0.0077
(0.1916)

γ u
4 3.0000 3.0008

(0.5383)
2.9291
(1.1328)

3.0112
(0.5394)

2.9787
(1.1322)

γ
µ

2 1.0000 0.9978
(0.2182)

0.9958
(0.3124)

0.9922
(0.2318)

0.9836
(0.3100)

γ
µ

3 0.0000 −0.0154
(0.4240)

−0.0232
(0.4350)

γ
µ

4 3.0000 2.9951
(1.6088)

2.7931
(2.9550)

3.0049
(1.7287)

2.5643
(2.6596)

Pair (ii)

γ u
2 1.0000 1.0009

(0.0848)
0.9993
(0.1066)

0.9970
(0.0847)

0.9960
(0.1054)

γ u
3 0.0000 −0.0144

(0.3949)
0.0059
(0.3881)

γ u
4 4.5000 4.4068

(2.3077)
4.2846
(2.8391)

4.3926
(2.2102)

4.2791
(2.5877)

γ
µ

2 1.0000 1.0066
(0.2258)

1.0039
(0.3119)

0.9820
(0.2247)

0.9816
(0.2998)

γ
µ

3 0.0000 −0.0012
(0.4121)

−0.0077
(0.4115)

γ
µ

4 3.0000 3.0268
(1.5644)

2.7744
(2.7649)

2.8639
(1.5430)

2.5948
(2.5709)

Pair (iii)

γ u
2 1.0000 0.9968

(0.0865)
0.9980
(0.1112)

0.9987
(0.0848)

0.9941
(0.1117)

γ u
3 0.0000 −0.0099

(0.4726)
0.0046
(0.3570)

γ u
4 4.5000 4.5442

(4.1050)
4.5991
(7.8376)

4.3503
(1.6972)

4.2739
(2.5514)

γ
µ

2 1.0000 0.9806
(0.2729)

0.9890
(0.3440)

0.9949
(0.2580)

0.9948
(0.3380)

γ
µ

3 0.0000 0.0150
(0.8831)

−0.0061
(0.7924)

γ
µ

4 4.5000 4.1871
(5.6770)

3.8972
(5.9752)

4.1150
(4.2207)

3.5968
(4.8422)

Pair (iv)

γ u
2 1.0000 1.0025

(0.0681)
0.9968
(0.0955)

0.9998
(0.0661)

0.9987
(0.0943)

γ u
3 0.0000 −0.0110

(0.1928)
0.0009
(0.1874)

γ u
4 3.0000 3.0089

(0.5169)
2.9613
(1.1209)

2.9904
(0.5537)

2.9375
(1.0983)

γ
µ

2 1.0000 0.9735
(0.5352)

0.9817
(0.5723)

0.9846
(0.5147)

0.9888
(0.5500)

γ
µ

3 2.8284 2.7682
(3.7871)

2.7114
(3.2512)

γ
µ

4 15.0000 14.7120
(41.9907)

13.9410
(42.1844)

13.7476
(28.1626)

12.8299
(26.0643)

the ratio of arrests to offenses, the probability of conviction given
arrest (PC ), which is measured by the ratio of convictions to ar-
rests, the probability of a prison sentence given a conviction (PP),
measured by the proportion of total convictions resulting in prison
sentences, and the average prison sentence in days (S) as a proxy
for sanction severity. The variables in X include the number of po-
lice per capita (Police), the population density (Density), which is
the county population divided by county land area, the percent
young male (Male), which is the proportion of the county’s pop-
ulation that is male and aged between 15 and 24, and the average
weekly wages in the county from nine industries (Wage1–Wage9).
There are sixteen covariates in total, and all variables are in logs.
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Table 7
Empirical means and empirical standard deviations (in the parenthesis) of the
estimators of higher order moments by the methods in the Appendix (WL) and in
Wu and Su (2010) (WS) for four pairs of different distributions of uit and µi with
(n, T ) = (100, 10).

True value ση = 0 ση = 1
WL WS WL WS

Pair (i)

γ u
2 1.0000 1.0007

(0.0479)
1.0013
(0.0680)

1.0028
(0.0481)

1.0025
(0.0668)

γ u
3 0.0000 0.0033

(0.1318)
0.0045
(0.1402)

γ u
4 3.0000 3.0028

(0.3783)
2.9931
(0.8336)

3.0138
(0.3884)

2.9736
(0.7779)

γ
µ

2 1.0000 0.9870
(0.1557)

0.9878
(0.2188)

0.9929
(0.1573)

0.9897
(0.2162)

γ
µ

3 0.0000 0.0061
(0.2965)

0.0001
(0.2795)

γ
µ

4 3.0000 2.9337
(1.1136)

2.7650
(2.0021)

2.9462
(1.1144)

2.7955
(2.0447)

Pair (ii)

γ u
2 1.0000 1.0025

(0.0621)
1.0035
(0.0772)

0.9977
(0.0620)

0.9959
(0.0776)

γ u
3 0.0000 −0.0073

(0.2718)
0.0056
(0.2913)

γ u
4 4.5000 4.4709

(1.5476)
4.4185
(1.8632)

4.4522
(2.1921)

4.4373
(2.6783)

γ
µ

2 1.0000 0.9939
(0.1640)

0.9920
(0.2278)

0.9975
(0.1516)

0.9993
(0.2109)

γ
µ

3 0.0000 0.0061
(0.2858)

−0.0076
(0.2829)

γ
µ

4 3.0000 2.9882
(1.1581)

2.8336
(2.1707)

2.9666
(1.0746)

2.7896
(1.8683)

Pair (iii)

γ u
2 1.0000 1.0002

(0.0599)
0.9968
(0.0757)

0.9989
(0.0582)

0.9988
(0.0738)

γ u
3 0.0000 0.0117

(0.2694)
−0.0025
(0.2564)

γ u
4 4.5000 4.4540

(1.3509)
4.3594
(1.7810)

4.4246
(1.3491)

4.3382
(1.7784)

γ
µ

2 1.0000 1.0014
(0.1950)

0.9994
(0.2466)

1.0072
(0.2037)

1.0012
(0.2481)

γ
µ

3 0.0000 0.0088
(0.6124)

−0.0239
(0.7479)

γ
µ

4 4.5000 4.4286
(3.6203)

4.2291
(4.7358)

4.6572
(5.5419)

4.3361
(6.3122)

Pair (iv)

γ u
2 1.0000 1.0019

(0.0474)
0.9999
(0.0654)

1.0005
(0.0462)

1.0004
(0.0663)

γ u
3 0.0000 −0.0038

(0.1313)
0.0029
(0.1340)

γ u
4 3.0000 3.0108

(0.3744)
2.9604
(0.7585)

3.0021
(0.3746)

2.9542
(0.8156)

γ
µ

2 1.0000 1.0025
(0.3903)

0.9987
(0.4167)

0.9870
(0.3675)

0.9894
(0.3970)

γ
µ

3 2.8284 2.8708
(2.6188)

2.7569
(2.4520)

γ
µ

4 15.0000 15.3352
(23.8481)

14.8863
(25.5117)

14.4445
(24.0418)

14.1470
(24.3741)

Cornwell and Trumbull (1994) emphasized the existence of the
county-specific effectµi aswell as the time effect ηt , and theywere
also verified by some F tests in Baltagi (2006). This section analyzes
this panel data again to demonstrate the performance of the three
proposed tests.

We concentrate on a subset of the above panel data, which con-
sists of 21 counties in western North Carolina, since the p-values of
tests on the whole data are all tiny. The test Tµ and other two tests
for the county-specific effect, BCLµ and Fµ, are first considered for
the data in the first T years with T = 3, . . . , 7. The p-values of
BCLµ with T = 3 and 4 are both around 0.8, and others are all less
than 0.0001. We may conclude that the test BCLµ fails to provide
Table 8
Values of three test statistics for the county-specific effect, BCLµ, T ∗

µ and Tµ .

Length of time points (T )

3 4 5 6 7

BCLµ −0.87∗
−0.82∗∗ 4.79 5.30 5.05

T ∗
µ 31.76 33.83 28.41 28.79 20.49

Tµ 5527.00 1936.60 1578.50 280.81 462.66

Note: the p-values of BCLµ at T = 3 and 4 are respectively 0.81 (*) and 0.79 (**), and
all others are less than 0.0001.

Table 9
The p-values of the three tests for the time effect, BCLη, Fη and Tη .

Tests Length of time points (T )

3 4 5 6 7

BCLη 0.5920 0.0898 0.1520 0.1376 0.0240
Fη 0.4226 0.1037 0.1364 0.1474 0.0457
Tη 0.2228 0.0317 0.0591 0.0759 0.0162

a correct decision due to the small values of T , and the county-
specific effect is confirmed for this subset. Note that the test Fµ

is equivalent to T ∗
µ, and the three test statistics, BCLµ, T ∗

µ and Tµ,
are comparable since they have the same asymptotic distribution.
Table 8 lists the values of these three test statistics. It can be seen
that the values of Tµ are significantly greater than those of other
two test statistics. This partially verifies the powerfulness of our
test Tµ comparing with BCLµ and Fµ. Note that the county-specific
characteristicswere argued by Cornwell and Trumbull (1994) to be
correlated with the covariates (P ′

it , X
′

it)
′, see also Baltagi (2006).

We next test for the presence of the time effect. The covari-
ates Pit and Xit are first centered by P̄.t = n−1n

i=1 Pit and X̄.t =

n−1n
i=1 Xit , and then the test Tη as well as other two tests for the

time effect, BCLη and Fη , are conducted. Their p-values are given in
Table 9, and those for the test Tη are calculated from a χ2

T−1. At the
5% significance level, the time effect is confirmed by these three
tests when T = 7, and is shown to be absent by BCLη and Fη when
T < 7. We may conclude the existence of the time effect based on
our test while tests BCLη and Fη may require a large sample size
to be effective. From Table 9, the p-values of Tη are all less than
those of BCLη and Fη , and we may argue that our test Tη is more
powerful. Finally, we perform the test Tµη2 withω = 0.5 as well as
Tµη1, BPµη and Fµη to jointly check the presence of both effects, and
all calculated p-values are less than 0.0001. Note that these four
test statistics have different null distributions, and we may not be
able to compare their powerfulness by values of the test statistics.

7. Discussions

An important application of tests for individual and time effects
is to construct an efficient estimator of the coefficients β . For
example, if the null hypothesis Hη

0 for the time effect is accepted,
then we may employ the feasible GLS to estimate β , and it is
asymptotically efficient regardless of the absence of the individual
effect. However, when Hη

0 is wrongly accepted, the resulting
feasible GLS estimator will be inefficient and even inconsistent as
ηt is a fixed effect. Suppose that EXi = cιT for some scalar c, {ηt}

are i.i.d. withN(0, σ 2
η ), and are independent of {uit} andXi, and the

significance level is set to 5%. When σ 2
η = σ 2

2 /n > 0 and n → ∞,
by Theorem 2, we can calculate the probability that Hη

0 is falsely
accepted,

P(Tη < χ2
0.05,T−1) = F


χ2
0.05,T−1

(σ 2
2 /σ 2

u ) + 1


,

where F(·) is the distribution function of χ2
T−1, and χ2

0.05,T−1 is the
95th percentile of χ2

T−1 with F(χ2
0.05,T−1) = 0.95. This probability

will tend to 95% when σ 2
2 → 0, and it may be even higher for
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a finite sample size n. Leeb and Potscher (2005) carefully studied
all kinds of situations for the parameter estimations following a
predetermined model selection procedure, and these are called
‘‘post-model-selection estimations’’. It is interesting to similarly
discuss the ‘‘post-testing estimators’’ of the coefficients β under
the proposed tests in this paper.

The second possible extension is to apply the methodology
in this paper to the two-way error component model with
autoregressive (AR) idiosyncratic errors, see Lillard and Willis
(1978) and Chapter 5 of Baltagi (2008). For example, we can first
apply the Prais–Winsten transformation matrix to transform the
AR errors into serially uncorrelated errors, and then obtain the
estimators of the coefficients in the AR part iteratively. Based on
these fitted parameters, we can transform the serially correlated
panel data model into the standard two-way error component
model (1), and then the method in this paper can be applied.

Another application is to the spatial panel data models, which
have attracted more and more attentions, see Baltagi et al. (2007),
Yu et al. (2008), Lee and Yu (2010a,b), etc. Themaximum likelihood
estimation (MLE) is usually considered in this literature, and
then the corresponding tests are based on the assumption of
Gaussian. However, Baltagi (2008, Chapter 10) argued that theMLE
may involve substantial problems in computation when the cross
section dimension (n) is large. Kapoor et al. (2007) suggested a
method of generalized moment (GM) estimation for the spatial
parameter in the spatial panel data model with no assumption on
the distributions. Although Kapoor et al. (2007) did not consider
the time effect in the disturbances, it is not difficult to modify their
moment conditions to obtain a new GM estimation when the time
effect is presented. Based on this estimate, the spatial panel data
model can be rewritten into the classical static panel data model
(1). Then tests for individual and time effects and the estimation of
higher order moments can be derived similarly.

Finally, after some proper modifications, the methodology in
this paper can be extended to handle the dynamic panel models,
see Wu and Zhu (2012). In addition, Li and Zhu (2010) considered
a test for semi-parametric mixed models for longitudinal data
without the time effect. We believe that ourmethod can be further
extended tomore general settings such as semi-parametric or non-
parametric models.
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Appendix. Technical details

We first present the proofs of Theorem 1, Corollaries 1 and 2,
Theorem 2, Corollary 3 and Theorem 3, and then discuss the case of
higher order moments of the idiosyncratic error and the individual
effect.

Proof of Theorem 1. Since {Xi} and {ui} are both i.i.d. sequences,
we have that

n−1/2
n

i=1

[Xi − E(Xi)] = Op(1), n−1/2
n

i=1

ui = Op(1),
1
n

n
i=1

X′

iP
⊥

ιT
Xi =

1
n

n
i=1

X′

iP
⊥

ιT
Xi

−


n−1

n
j=1

Xj

′

P⊥

ιT


n−1

n
j=1

Xj


= Σ1 + op(1), (11)

and

1
√
n

n
i=1

X′

iP
⊥

ιT
ui =

1
√
n

n
i=1

(Xi − EXi)
′P⊥

ιT
ui

+


n−1

n
i=1

(Xi − EXi)

′

P⊥

ιT


n−1/2

n
j=1

uj



=
1

√
n

n
i=1

(Xi − EXi)
′P⊥

ιT
ui + op(1). (12)

Note that E[(Xi − EXi)
′P⊥

ιT
ui] = E(X′

iui) − T−1cov(X′

iιT ,u
′

iιT ) = 0.
Together with (11) and (12), it implies that

√
n(β − β) = Σ−1

1 ·
1

√
n

n
i=1

(Xi − EXi)
′P⊥

ιT
ui

+ op(1) →d N(0, Σ−1
1 Σ2Σ

−1
1 ), (13)

where Σ1 = E(X′

iP
⊥
ιT
Xi) − E(X′

i)P
⊥
ιT
E(Xi), and Σ2 = E[(Xi −

EXi)
′P⊥

ιT
uiu′

iP
⊥
ιT

(Xi − EXi)]. From (11)–(13), we can show that

1
√
n

n
i=1

∥Q ′(yi −Xiβ)∥2
=

1
√
n

n
i=1

∥Q ′ui + Q ′Xi(β −β)∥2

=
1

√
n

n
i=1

u′

iP
⊥

ιT
ui + op(1)

=
1

√
n

n
i=1

u′

iP
⊥

ιT
ui +


n−1

n
i=1

ui

′

× P⊥

ιT


n−1/2

n
j=1

uj


+ op(1)

=
1

√
n

n
i=1

∥Q ′ui∥
2
+ op(1),

which implies that

σ 2
0u =

1
n

n
i=1

∥Q ′ui∥
2/(T − 1) + op(n−1/2). (14)

From Assumption (A2), we can show that

n−1/4
n

i=1

µi = Op(1), n−1/4
n

i=1

µiui = Op(1) and

n−3/4
n

i=1

µiXi = Ω + op(1).

(15)

It is implied that

n−1/4
n

i=1

µiui = Op(1) and

n−3/4
n

i=1

µiXi = Ω + op(1).

(16)
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Furthermore, by using methods respectively similar to (11) and
(12), we have that

n−1
n

i=1

X′

i
Xi = Op(1) and n−1/2

n
i=1

X′

iui = Op(1). (17)

Thus, by (16), (17) and Assumption (A1),

1
√
n

n
i=1

∥yi −Xiβ∥
2

=
1

√
n

n
i=1

∥ui +µiιT +Xi(β −β)∥2

=
1

√
n

n
i=1

∥ui∥
2
+ ∥µiιT∥

2
+ op(1)

=
1

√
n

n
i=1

∥ui∥
2
+ Tσ 2

1 + op(1)

and

σ 2
1u =

1
n

n
i=1

∥ui∥
2/T + σ 2

1 + op(1). (18)

Let ξi = ∥ui∥
2/T −∥Q ′ui∥

2/(T −1). It holds that E(ξi) = 0 and
E(ξ 2

i ) = 2(σ 2
u )2/[T (T − 1)]. It is noteworthy that {ξi} is an i.i.d.

sequence. By (14), (18) and the central limit theorem, we can show
that

√
n(σ 2

1u −σ 2
0u) = σ 2

1 +
1

√
n

n
i=1

ξi + op(1)

→d σ 2
1 + N(0, 2(σ 2

u )2/[T (T − 1)]).

Note thatσ 2
0u is a consistent estimator of σ 2

u under bothHµ

0 andHµ

1 .
Following Slutsky’s theorem,we can show that Tµ →d σ 2

1 [0.5T (T−

1)]1/2/σ 2
u + N(0, 1). �

Proof of Corollary 1. Notice thatyi =Xiβ +µiιT +ui, and then

β1 =


n

i=1

X′

i
Xi

−1 n
i=1

X′

iyi = β + ν1n + ν2n,

where ν1n =
n

i=1
X′

i
Xi
−1n

i=1
X′

iµiιT and ν2n =
n

i=1
X′

i
Xi
−1n

i=1
X′

iui. From (16) and (17), we can show that n1/4ν1n = Σ−1
3

Ω ′ιT + op(1), ν2n = Op(n−1/2), and

1
√
n

n
i=1

∥yi −Xiβ1∥
2

=
1

√
n

n
i=1

∥ui +µiιT −Xiν1n −Xiν2n∥
2

=
1

√
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(∥ui∥
2
+ ∥µiιT −Xiν1n∥

2) + op(1)

=
1

√
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i=1

∥ui∥
2
+ Tσ 2

1 − ι′TΩΣ−1
3 Ω ′ιT + op(1).

Together with (14), it holds that

√
n(σ 2

1u −σ 2
0u) = σ 2

1 −
1
T

ι′TΩΣ−1
3 Ω ′ιT +

1
√
n

n
i=1

ξi + op(1)

→d σ 2
1 − T−1ι′TΩΣ−1

3 Ω ′ιT

+N(0, 2(σ 2
u )2/[T (T − 1)]),

where {ξi} are defined as in the proof of Theorem 1. Following
Slutsky’s theorem again, we finish the proof. �
Proof of Corollary 2. By Assumption (A3), it can be shown that
n−1/4n

i=1 µi = Op(1), n−1/4n
i=1 µiui = Op(1) and n−3/4n

i=1
µiXi = Op(1), and they imply that

n−1/4
n

i=1

µiui = Op(1) and n−3/4
n

i=1

µiXi = Op(1).

Together with (17), by a method similar to (18), we can show that

σ 2
1u =

1
n

n
i=1

∥ui∥
2/T + σ 2

1 + op(1).

Following the proof of Theorem 1, we finish the proof. �

Proof of Theorem 2. It can be shown that, by (13),

1
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j=1

Q ′(yj − Xjβ)

=
√
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1
√
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′P⊥

ιT
}uj

+ op(1)

→d Q ′ζ∗
+ σuζ2, (19)

where ζ2 is a (T − 1)-dimensional normal random vector with
mean zero and variance matrix IT−1 − σ−2

u Σ5. It holds that

E(ξiui) =
1
T
E(∥ui∥

2ui) −
1

T − 1
E(∥Q ′ui∥

2ui) = 0,

where ξi = ∥ui∥
2/T − ∥Q ′ui∥

2/(T − 1) is defined as in the proof

of Theorem 1, and n−1/2n
i=1 ξi →d


Eξ 2

i · ζ1. Hence, when {ui} is
independent of {Xi}, ζ1 and ζ2 are independent.

We further have that
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−

 1
√
n

n
j=1

Q ′(yj − Xjβ)


2

, (20)

and

σ 2
2u =

n − 1
n

σ 2
0u +

1
n(T − 1)

 1
√
n

n
j=1

Q ′(yj − Xjβ)


2

.

Then, by (19)

Tη =
1σ 2
0u

·

 1
√
n

n
j=1

Q ′(yj − Xjβ)


2

=
1
σ 2
u

·

 1
√
n

n
j=1

Q ′(yj − Xjβ)


2

+ op(1) →d ∥σ−1
u Q ′ζ∗

+ ζ2∥
2.

Note that the null hypothesis Hη

0 corresponds to the case with
σ2 = 0. Hence, we finish the proof. �
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Proof of Corollary 3. Denote Σ0 = E(X′

iQQ
′Xi) = E(X′

iP
⊥
ιT
Xi). By

(13) and the condition that Q ′E(Xi) = 0, we have that Σ1 = Σ0
and

√
n(β − β) = Σ−1

0 ·


1

√
n

n
i=1

X′

iQQ
′ui

−


1
n

n
i=1

X′

iQ


1

√
n

n
i=1

Q ′ui


+ op(n−1/2)

= Op(1). (21)

It holds that

β2 =


n

i=1

X′

iQQ
′Xi

−1 n
i=1

X′

iQQ
′yi

= β +


n

i=1

X′

iQQ
′Xi

−1 n
i=1

X′

iQQ
′ui

+


n

i=1

X′

iQQ
′Xi

−1 n
i=1

X′

iQQ
′η.

Notice that η = Op(n−1/2). Thus,

√
n(β2 − β) = Σ−1

0 ·
1

√
n

n
i=1

X′

iQQ
′ui + op(1) = Op(1), (22)

and

n(β2 −β) = Σ−1
0 ·


1

√
n

n
i=1

X′

iQ


·
√
nQ ′η

+


1

√
n

n
i=1

X′

iQ


1

√
n

n
i=1

Q ′ui


+ op(1)

= Op(1). (23)

By (21)–(23), we can show that
n

i=1

∥Q ′(yi − Xiβ2)∥
2

=

n
i=1

∥Q ′(yi − Xiβ) − Q ′Xi(β2 −β)∥2

=

n
i=1

∥Q ′(yi − Xiβ)∥2
+ op(1).

Together with (20) and following the proof of Theorem 2, we finish
the proof. �

Proof of Theorem 3. We first show the result of test statistic Tµη1.
Note that yi = αιT +Xiβ+µiιT +η+ui. By (13), (15), Assumptions
(A1), (A2) and (A4), it holds that

√
n(α − α) =

1
Tn

n
i=1

ι′TXi ·
√
n(β −β)

+
1

√
n

n
i=1

µi +

√
n

T
ι′Tη +

1
T
√
n

n
i=1

ι′Tui

= Op(1), (24)

and

1
√
n

n
i=1

∥yi −αιT − Xiβ∥
2

=
1

√
n

n
i=1

∥(α −α)ιT

+Xi(β −β) + µiιT + η + ui∥
2

=
1

√
n

n
i=1

∥ui∥
2
+ Tσ 2

1 + op(1).
Thus,

σ 2
3u =

1
n

n
i=1

∥ui∥
2/T + σ 2

1 + op(1).

Togetherwith (14) and following the proof of Theorem1,we derive
the asymptotic distribution of Tµη1.

Let X̄ = n−1n
i=1 Xi, ȳ = n−1n

i=1 yi, and ū = n−1n
i=1 ui.

For quantityβ3 in test statistic T ∗

µη1, we have that

β3 =


n−1

n
i=1

X′

i
Xi + X̄′QQ ′X̄

−1 
n−1

n
i=1

X′

iyi + X̄′QQ ′ȳ


= β + ν∗

1n + ν∗

2n,

where

n1/4ν∗

1n =


n−1

n
i=1

X′

i
Xi + X̄′QQ ′X̄

−1

n−3/4
n

i=1

X′

iµiιT

= Σ−1
6 Ω ′ιT + op(1),

and

ν∗

2n =


n−1

n
i=1

X′

i
Xi + X̄′QQ ′X̄

−1

×


n−1

n
i=1

X′

iui + X̄QQ ′(ū + η)


= Op(n−1/2),

see also the proof of Corollary 1. By a method similar to (24), it can
be shown that

α3 = (nT )−1
n

i=1

ι′T (yi − Xiβ3) = α + τ1n + τ2n,

where

n1/4τ1n = −
1
Tn

n
i=1

ι′TXi · n1/4ν∗

1n

= −T−1ι′TE(Xi)Σ
−1
6 Ω ′ιT + op(1),

and

τ2n = −
1
Tn

n
i=1

ι′TXi · ν∗

2n +
1
n

n
i=1

µi

+
1
T

ι′Tη +
1
Tn

n
i=1

ι′Tui = Op(n−1/2).

Thus,

1
√
n

n
i=1

∥yi −α3ιT − Xiβ3∥
2

=
1

√
n

n
i=1

∥(α −α3)ιT + Xi(β −β3) + µiιT + η + ui∥
2

=
1

√
n

n
i=1

(∥ui∥
2
+ ∥µiιT − τ1nιT − Xiν

∗

1n∥
2) + op(1)

=
1

√
n

n
i=1

∥ui∥
2
+ Tσ 2

1 − Tδ + op(1).

Togetherwith (14) and following the proof of Theorem1,we derive
the asymptotic distribution of T ∗

µη1. �
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Higher order moments of the idiosyncratic error and the individual ef-
fect. For k ≥ 2, denote by γ u

k the kth order moment of the idiosyn-
cratic error uit , and by γ

µ

k the kth order moment of the individual
effectµi. We next attempt to construct the estimators of γ u

k , which
are robust to the presence of both individual and time effects, and
the estimators of γ µ

k , which are robust to the presence of the time
effect. Note that γ u

2 = σ 2
u .

The higher order moments of the idiosyncratic error γ u
k are

estimated based on the residuals from model (5). For k = 2, we
can useσ 2

0u in (7) to estimate γ u
2 , i.e.γ u

2 = σ 2
0u.

Denote q1 = T−1/2ιT ,Q = (q2, q3, . . . , qT ), ql = (q1l, q2l,
. . . , qTl)′ for 1 ≤ l ≤ T , a1n =

T
l=2
T

t=1 q
3
tl


(n2

− 3n + 2)/n2,

a2n =

T
l=2
T

t=1 q
4
tl


(n − 1)(n2

− 3n + 3)/n3, and a3n =

3a−1
2n (n − 1)2(T − 1)/n2

− 3. It holds that

E


T

l=2

(q′

lui)
3


= E


T

l=2

q⊗3
l

′

(u⊗3
i )


= a1nγ u

3 ,

and

E


T

l=2

(q′

lui)
4


= E


T

l=2

q⊗4
l

′

(u⊗4
i )


= a2nγ u

4 + a2na3n(γ u
2 )2,

where a⊗k
= a ⊗ · · · ⊗ a  

k

with positive integer k, and ⊗ is the

Kronecker product. We then can estimate the third- and fourth-
order moments of uit by

γ u
3 = a−1

1n ·
1
n

n
i=1


T

l=2

q⊗3
l

′

(yi −Xiβ)⊗3,

and

γ u
4 = a−1

2n ·
1
n

n
i=1


T

l=2

q⊗4
l

′

(yi −Xiβ)⊗4
− a3n(γ u

2 )2,

whereβ is defined as in (6). Note that the quantities,
T

l=2
T

t=1

q3tl,
T

l=2
T

t=1 q
4
tl and

T
l=2 q

⊗k
l with k = 2, 3, and 4, all depend

on the matrix Q .
Note that, by the orthogonal transformation, the information of

µi in model (3) is concentrated in model (4). We then can make
use of model (4) only to estimate the higher order moments of the
individual effect γ µ

k . Suppose {µi} is independent of {uit}, and then
we can separate the moments of µi from those of Tµi + ιTui, i.e.

E(Tµi)
2

= E(Tµi + ιTui)
2
− E(ιTui)

2,

E(Tµi)
3

= E(Tµi + ιTui)
3
− E(ιTui)

3

and

E(Tµi)
4

= E(Tµi + ιTui)
4
− E(ιTui)

4
− 6E(Tµi)

2E(ιTui)
2.

Similar to the counterpart of uit , we can estimate the higher order
moments of the individual effect as follows,

γ µ

2 = b−1
1n ·

1
n

n
i=1

(ι′Tyi − ι′T
Xiβ)2 − T−1γ u

2 ,

γ µ

3 = b−1
2n ·

1
n

n
i=1

(ι′Tyi − ι′T
Xiβ)3 − T−2γ u

3 ,

γ µ

4 = b−1
3n ·

1
n

n
i=1

(ι′Tyi − ι′T
Xiβ)4

− T−3γ u
4 − b4nγ u

2γ µ

2 − b5n(γ u
2 )2 − b6n(γ µ

2 )2,
where b1n = T 2(n − 1)/n, b2n = T 3(n2
− 3n + 2)/n2, b3n =

T 4(n − 1)(n2
− 3n + 3)/n3, b4n = 6T−1n(n − 1)/(n2

− 3n +

3), b5n = T−3
[3(2n − 3) + 3n(n − 1)(T − 1)]/(n2

− 3n + 3),
and b6n = 3(2n − 3)/(n2

− 3n + 3).
Denote

κ0 =
1

T − 1


T

l=2

q⊗2
l

′

cov(u⊗2
i ,u⊗4

i )


T

l=2

q⊗4
l


,

κ1 =
1

T
l=2

T
t=1

q4tl

,

κ2 = −6[κ1(T − 1) − 1]γ u
2 ,

κ3 =
1

T 3(T − 1)
[6T 2γ

µ

2 + 6(T − 1)γ u
2 ],

κ4 = γ
µ

4 +
1
T 3

[γ u
4 + 3(T − 1)(γ u

2 )2] +
6
T

γ
µ

2 γ u
2 ,

κ = (κ1, κ2)
′ and Wk = ιTk − T

T
l=2
T

t=1 q
k
tl ·
T

l=2 q
⊗k
l , where

ιTk is a T k-dimensional vector with all elements equal to one, and
k = 2, 3 and 4. Let

Υ2 =
1

(T − 1)2


T

l=2

q⊗2
l

′

var(u⊗2
i )


T

l=2

q⊗2
l


,

Υ3 =
1

T
l=2

T
t=1

q3tl

2


T

l=2

q⊗3
l

′

var(u⊗3
i )


T

l=2

q⊗3
l


,

Υ4 = κ ′




T
l=2

q⊗4
l

′

var(u⊗4
i )


T

l=2

q⊗4
l


κ0

κ0 Υ2

 κ,

Ψ2 =
1
T 4

W ′

2E[(µiιT + ui)(µiιT + ui)
′
]
⊗2W2 − (γ

µ

2 )2,

Ψ3 =
1
T 6

W ′

3E[(µiιT + ui)(µiιT + ui)
′
]
⊗3W3 − (γ

µ

3 )2,

and

Ψ4 =
1
T 8

W ′

4E[(µiιT + ui)(µiιT + ui)
′
]
⊗4W4

+ κ2
3


T

l=2

q⊗2
l

′

E[(µiιT + ui)(µiιT + ui)
′
]
⊗2


T

l=2

q⊗2
l



−
2κ3

T 4
W ′

4E[(µiιT + ui)
⊗4

⊗ ((µiιT + ui)
⊗2)′]


T

l=2

q⊗2
l


− (κ4)

2.

By a method similar to Wu and Zhu (2010), for k = 2, 3 and 4,
we can show that, if E(u2k

it ) < ∞ and E∥Xi∥
2k < ∞, then

√
n(γ u

k − γ u
k ) →d N(0, Υk)

as n → ∞ and, if {µi} is further independent of {uit} and {Xi} with
E(µ2k

i ) < ∞, then
√
n(γ µ

k − γ
µ

k ) →d N(0, Ψk)

as n → ∞. The proof is omitted to save the space, and is available
upon request.

Note that the asymptotic results are based on large n and fixed
T , and we do not have enough information to obtain a consistent
estimation of the higher order moments of ηt .

We sometimes may be interested in the skewness and kurto-
sis, instead of the third and the fourth order moments, for asym-
metry and heavy tails. Note that the skewness is γ3/(γ2)

3/2 and
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the kurtosis is γ4/(γ2)
2

− 3. By the Delta method (van der Vaart,
1998, Chapter 3), it is easy to derive the asymptotic normalities of
the skewness and kurtosis estimators based onγk.

For the matrix Q in the above estimators and asymptotic vari-
ances, we suggest to use Q = (q2, q3, . . . , qT ) and ql = {(l −

1)IT (l)−
l−1

k=1 IT (k)}/
√
l(l − 1), where 2 ≤ l ≤ T and IT (k) stands

for the kth column vector of the identitymatrix IT . It holds that, un-
der this value of Q ,

T
l=2
T

t=1 q
3
tl =

T
l=2(l − 2)/

√
l(l − 1) andT

l=2
T

t=1 q
4
tl = T − 1 +

T
l=2(3 − 2l)/(l2 − l). We have tried

some different values of Q , and the results are similar. �
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