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SUMMARY

This paper extends the classical two-regime threshold autoregressive model by introducing hysteresis
to its regime-switching structure, which leads to a new model: the hysteretic autoregressive model. The
proposed model enjoys the piecewise linear structure of a threshold model but has a more flexible regime
switching mechanism. A sufficient condition is given for geometric ergodicity. Conditional least squares
estimation is discussed, and the asymptotic distributions of its estimators and information criteria for model
selection are derived. Simulation results and an example support the model.
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1. INTRODUCTION

Threshold time series models have been very successful since their introduction by Tong (1978) and
Tong & Lim (1980); see also Chan (1993), Tsay (1998), Hansen (2000), and Ling & Tong (2005). Due
to its piecewise linear nature, the threshold model can mimic nonlinear features such as resonance, limit
cycles and time-irreversibility, and it is also easy to fit numerically. Tong (1990) gives a comprehensive
exposition of such models.

However, there is a sudden change in the probability structure when a threshold process switches
regimes, which may not be the case in the real world. It has been observed that threshold models usu-
ally work well except around the boundaries between different regimes (Wu & Chen, 2007). The smooth-
transition threshold model (Chan & Tong, 1986; van Dijk et al., 2002) can reduce this problem to some
extent, but it may not function well in complicated cases, and it is not piecewise linear. Hamilton (1989)
and McCulloch & Tsay (1994) used the discrete-state Markov switching model to analyse financial and
economic time series. Regime switching in that model is completely controlled by a latent random variable.
The model enjoys some flexibility in the switching mechanism, but the fitted model may be difficult to
interpret. Wu & Chen (2007) considered a threshold variable-driven switching model in which the switch-
ing mechanism is jointly controlled by a latent variable and some observable variables, but this lacks a
physical interpretation.

Hysteresis has been widely observed in economics, engineering, mechanics, material science, etc. Con-
sider the simple microeconomic example in Gocke (2002). A previously inactive firm may have to bear a
market entry cost to produce a certain product, i.e., production will become active only when the price of
the product, pt , is high enough to cover both the entry cost, et , and the cost of ingredients, ct . However,
once production has started, the firm will become inactive if and only if pt becomes too low to cover the
cost ct . As a result, when ct < pt < ct + et , the active or inactive status remains unchanged. The original
magnetic hysteresis of a single iron-crystal at the micro level exhibits exactly this pattern (Kneller, 1962),
but hysteresis at the macro level has different and complicated patterns. All extant discussions of hystere-
sis in economics focus on the macro level, and there is no specific hysteretic model in econometrics and
statistics. Camarero et al. (2006) and Proietti (2006) used nonstationarity to interpret hysteresis in macroe-
conomic time series, whilst Kannebley (2008) and Perez-Alonso & Sanzo (2011) considered threshold
models.
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From the viewpoint of threshold models, the hysteretic pattern at the micro level defines a regime
switching mechanism, in which the active and inactive statuses correspond to two different regimes. This
motivates us to propose a somewhat different type of piecewise linear model, which we call the hysteretic
time series model. Consider a simple hysteretic process with hysteresis variable zt and hysteresis zone
(rL , rU ]. The time series is at the lower regime when zt � rL , and at the upper regime when zt > rU , and
the regime remains unchanged as long as zt falls within the hysteresis zone. The Supplementary Material
gives more details on the regime switching mechanisms of this model. This paper concentrates on the
self-exciting hysteretic autoregressive model.

2. HYSTERETIC AUTOREGRESSIVE PROCESSES

Consider a self-exciting hysteretic autoregressive model with regime indicator Rt :

yt =
{

xT
t φ + σ1εt , Rt = 1,

xT
t ψ + σ2εt , Rt = 0,

Rt =

⎧⎪⎨
⎪⎩

1, yt−d � rL ,

0, yt−d > rU ,

Rt−1, otherwise,

(1)

where xt = (1, yt−1, . . . , yt−p)
T, φ = (γ1, φ1, . . . , φp)

T, ψ = (γ2, ψ1, . . . , ψp)
T, the εt s are independent

and identically distributed random variables with mean zero and variance one, σ1 > 0 and σ2 > 0 are
scalars, integer d > 0 is the delay parameter, and rL � rU are the boundary parameters of the hystere-
sis zone. Model (1) includes the traditional two-regime threshold autoregressive model as a special case
when rL = rU . The hysteretic model is also referred to as the buffered threshold model in Zhu et al. (2014).

From (1), the regime indicator takes the form

Rt = I (yt−d � rL)+ I (rL < yt−d � rU )Rt−1

= I (yt−d � rL)+
∞∑
j=0

j∏
i=0

I (rL < yt−d−i � rU )I (yt−d− j−1 � rL)

almost surely. When rL < rU , the regime indicator Rt depends on past observations that are infinitely far
away, which renders the hysteretic model different from traditional threshold models (Tong, 1990; Hansen,
2000).

Suppose that σ1 = σ2 = σ . Denote Yt = (yt , . . . , yt−p+1, Rt )
T, et = (σεt , 0, . . . , 0)T, M0t = {m0t ,

0, . . . , 0, I (yt−d � rL)}T,

M1t =

⎛
⎜⎜⎜⎝

m1t m2t · · · m pt 0
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 I (rL < yt−d � rU )

⎞
⎟⎟⎟⎠ ,

m0t = γ1 I (At )+ γ2 I (Ac
t ), and mit = φi I (At )+ ψi I (Ac

t )with i = 1, . . . , p, where At is the event {yt−d �
rL} ∪ {rL < yt−d � rU , Rt−1 = 1} and Ac

t is its complement. It can be verified that Yt = g(Yt−1)+ et with
g(Yt−1)= M0t + M1t Yt−1. As a result, {Yt } is a Markov chain, and, by a method similar to that in Chan &
Tong (1985), we can obtain its geometric ergodicity.

THEOREM 1. Suppose that εt has a density function that is positive everywhere on R and E(|εt |) <∞.
If
∑p

i=1 |φi |< 1 and
∑p

j=1 |ψ j |< 1, then the multivariate process {Yt } is geometrically ergodic, and hence
we can obtain the geometric ergodicity of the hysteretic process {yt }.

The case with σ1 |= σ2 can be proved similarly. Chan & Tong (1985) derived the geometric ergodicity
of two-regime threshold autoregressive models under the same conditions as in Theorem 1.
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3. CONDITIONAL LEAST SQUARES ESTIMATION

3·1. Estimation procedure

Let λ= (θ T, rL , rU , d)T denote the parameter vector of model (1), where θ = (φT, ψT)T. Let 	 be a
compact subset of R

2p+2, [a, b] be a predetermined interval and dmax be a predetermined positive inte-
ger. For the true values of parameter vector λ, we assume that θ0 = (φT

0, ψ
T
0)

T is an interior point of 	,
a < r0L < r0U < b and d0 ∈ D = {1, . . . , dmax}.

Denote the function for the sum of squared errors by Ln(λ)=
∑n

t=1{εt (λ)}2, where

εt (λ)= (yt − xT
t φ)Rt (rL , rU , d)+ (yt − xT

t ψ){1 − Rt (rL , rU , d)}.

Let n0 = max(p, dmax). For time series {yt ,−n0 + 1 � t � n} generated by model (1), the regime indicator
function Rt (rL , rU , d) in εt (λ) depends on past observations that are infinitely far away, and hence initial
values are needed for fitting.

For fixed rL , rU and d, the first few observations of the hysteresis variable, say y1−d , . . . , yt0−d , may
fall into the hysteresis zone (rL , rU ], such that we fail to identify the regimes of y1, . . . , yt0 . We can simply
assign them to the lower regime, and then denote the resulting regime indicator function by R̃t (rL , rU , d).
The exact value of Rt0+1(rL , rU , d) is known because yt0+1−d lies outside the hysteresis zone, and it can
be verified that R̃t (rL , rU , d)= Rt (rL , rU , d) as t0 < t � n.

By replacing Rt (rL , rU , d) in the definition of εt (λ) with R̃t (rL , rU , d), we can denote the function
ε̃t (λ), and hence L̃n(λ). Then the conditional least squares estimator can be defined as

λ̂n = (θ̂ T
n , r̂L , r̂U , d̂)T = argmin

λ

L̃n(λ).

Write R̃t = R̃t (r̂L , r̂U , d̂) for simplicity. We further estimate σ 2
1 and σ 2

2 by σ̂ 2
1n = n−1

1

∑n
t=1(yt − xT

t φ̂n)
2 R̃t

and σ̂ 2
2n = n−1

2

∑n
t=1(yt − xT

t ψ̂n)
2(1 − R̃t ), respectively, where θ̂n = (φ̂T

n, ψ̂
T
n)

T, n1 =∑n
t=1 R̃t and n2 =

n − n1.
Let Xt = [xT

t R̃t (rL , rU , d), xT
t {1 − R̃t (rL , rU , d)}]T. For each fixed (rL , rU , d), the minimizer of L̃n(λ)

has a closed form:

θ̃n(rL , rU , d)= argmin
θ

L̃n(λ)=
(

n∑
t=1

Xt X T
t

)−1 n∑
t=1

Xt yt . (2)

The step function L̃n{θ̃n(rL , rU , d), rL , rU , d} can be minimized by searching amongst all possible jumps,
i.e., d ∈ D and (rL , rU ) ∈ {(yt−d , ys−d) : 1 � t, s � n, a � yt−d � ys−d � b}; see Li & Li (2008, 2011).

For the initial values of the regime indicator function, we can instead assign these t0 observations to
the upper regime, and then denote the resulting function by R̃∗

t (rL , rU , d). Let L̃∗
n(λ) be the corresponding

sum of squared errors, and λ̂∗
n = argminλ L̃∗

n(λ). To improve accuracy, we can choose λ̂∗
n as the conditional

least squares estimator when L̃∗
n(λ̂

∗
n) < L̃n(λ̂n).

3·2. Asymptotic results

Assumption 1. It holds that φ0 |=ψ0, pr(yt ∈ [a, b]) < 1 and that εt has a bounded, continuous and pos-
itive density on R.

THEOREM 2. If the time series {yt } is strictly stationary and ergodic with E(|yt |2+δ) <∞ for a
small δ > 0, and Assumption 1 holds, then λ̂n → λ0, σ̂ 2

1n → σ 2
01 and σ̂ 2

2n → σ 2
02 almost surely, where

λ0 = (θ T
0 , r0L , r0U , d0)

T, σ 2
01 and σ 2

02 are the corresponding true parameters.

We can prove Theorem 2 by standard arguments for strong consistency. The delay parameter d takes
only integer values, so d̂ will equal d0 when sample size n is sufficiently large. Without loss of generality,
we assume that the true delay parameter, d0, is known for the reminder of this subsection, and it is then
deleted from parameter vector λ and corresponding functions.
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Assumption 2. The time series {yt } is strictly stationary with E(y4+δ
t ) <∞ for a small δ > 0, and

E(ε4
t ) <∞.

Assumption 3. The autoregressive function is discontinuous on the hysteresis zone [r0L , r0U ]; i.e.,
there exist p − 1 constants z p−1, . . . , z p−d+1, z p−d−1, . . . , z0, such that zT(ψ0 − φ0) |= 0 for all z p−d ∈
[r0L , r0U ], where z = (1, z p−1, . . . , z0)

T, and it is assumed that d � p without loss of generality.

Let Yt = (yt , . . . , yt−p+1, Rt )
T; then, from § 2, {Yt } is a Markov chain. Denote its m-step transition

probability function by Pm(x, A), where x ∈ R
p × {0, 1}, A ∈Bp × U , Bp is the class of Borel sets of R

p,
and U = {Ø, {0}, {1}, {0, 1}}.

Assumption 4. The time series {Yt } admits a unique invariant measure π(·), such that there exist K > 0
and 0 � ρ < 1, for any x ∈ R

p × {0, 1} and any m, ‖Pm(x, ·)− π(·)‖v � K (1 + ‖x‖)ρm , where ‖·‖v and
‖·‖ are, respectively, the total variation norm and Euclidean norm.

Under Assumption 4, {Yt } is said to be V -uniformly ergodic with V (x)= K (1 + ‖x‖), a condition
stronger than geometric ergodicity; see Chapter 16 in Meyn & Tweedie (1993). Following Chan & Tong
(1985) and Chan (1989), Assumption 4 is also implied by the conditions in Theorem 1.

THEOREM 3. If Assumptions 1–4 hold, then

(i) n(r̂L − r0L)= Op(1), n(r̂U − r0U )= Op(1) and

(ii) n1/2 supn(|rL −r0L |+|rL−r0L |)�B ‖θ̃n(rL , rU )− θ̃n(r0L , r0U )‖ = op(1) for any fixed 0< B <∞, where

θ̃n(rL , rU ) is defined as in (2).

Furthermore,
n1/2(θ̂n − θ0)→ N {0, diag(σ 2

01
−1
1 , σ 2

02
−1
2 )}

in distribution as n → ∞, where 1 = E(xt xT
t Rt ) and 2 = E{xt xT

t (1 − Rt )}.
Denote ξ1t =∑∞

j=0[{xT
t+ j (ψ0 − φ0)}2 + 2σ2xT

t+ j (ψ0 − φ0)εt+ j ]Ht+ j, j and ξ2t =∑∞
j=0[{xT

t+ j (ψ0 −
φ0)}2 − 2σ1xT

t+ j (ψ0 − φ0)εt+ j ]Ht+ j, j , where Ht, j =∏ j
l=1 I (r0L < yt−d+1−l � r0U ) with the convention∏0

l=1 = 1. For i = 1 and 2, let Fi,L(· | r) and Fi,U (· | r) be the conditional distribution functions of
ξi t {1 − Rt−1(r0)} and ξi t Rt−1(r0) given yt−d = r , respectively. Denote by π(·) the density function of yt .
We then define two independent one-dimensional two-sided compound Poisson processes:

℘L(s)= I (s < 0)

N (L)
1 (−s)∑
k=1

ζ
(1,L)
k + I (s � 0)

N (L)
2 (s)∑
k=1

ζ
(2,L)
k ,

and

℘U (s)= I (s < 0)

N (U )
1 (−s)∑
k=1

ζ
(1,U )
k + I (s � 0)

N (U )
2 (s)∑
k=1

ζ
(2,U )
k ,

where {N (L)
1 (s), s � 0} and {N (L)

2 (s), s � 0} are two Poisson processes with N (L)
1 (0)= N (L)

2 (0)= 0 and
the same jump rate π(r0L), {N (U )

1 (s), s � 0} and {N (U )
2 (s), s � 0} are another two Poisson processes with

N (U )
1 (0)= N (U )

2 (0)= 0 and the same jump rate π(r0U ), N (L)
1 (·) and N (U )

1 (·) are left-continuous, N (L)
2 (·)

and N (U )
2 (·) are right-continuous, and these four Poisson processes are independent. Each of the four

sequences, {ζ (i, j)
k , k � 1} with i = 1 or 2 and j = L or U , consists of independent and identically dis-

tributed random variables, where ζ (i,L)k and ζ (i,U )k have distribution functions Fi,L(· | r0L) and Fi,U (· | r0U ),
respectively.

For j = L and U , Assumption 3 implies that E(ζ (1, j)
k )= E(ζ (2, j)

k ) > 0, and then ℘ j (s) tends to +∞
as |s| → ∞. As in Li & Ling (2012), there exists a unique random square [M (L)

− ,M (L)
+ )× [M (U )

− ,M (U )
+ )

on which the process ℘(z)=℘L(zL)+ ℘U (zU ) attains its global minimum, where z = (zL , zU )
T ∈ R

2 and
[M ( j)

− ,M ( j)
+ )= argmins∈R

℘ j (s) with j = L or U .
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Table 1. Percentages of correctly selected, overfitted, underfitted and
wrongly selected models by the AIC and BIC, respectively

AIC BIC

n Correct Over Under Wrong Correct Over Under Wrong

Hysteretic autoregressive processes
200 43·0 9·2 0·3 47·5 69·2 1·3 0·7 28·8
400 70·0 12·7 0·0 17·3 95·0 0·0 1·0 4·0
800 87·0 12·3 0·0 0·7 100·0 0·0 0·0 0·0

Threshold autoregressive processes
200 83·3 15·2 1·3 0·2 86·2 12·7 0·5 0·6
400 87·5 12·5 0·0 0·0 99·0 0·3 0·7 0·0
800 91·2 8·8 0·0 0·0 100·0 0·0 0·0 0·0

THEOREM 4. If Assumptions 1–4 hold, then n(r̂L − r0L)→ M (L)
− and n(r̂U − r0U )→ M (U )

− in distribu-
tion as n → ∞. Moreover, n(r̂L − r0L), n(r̂U − r0U ) and n1/2(θ̂n − θ0) are asymptotically independent.

Theorem 4 can be obtained by combining the methods of proof for Theorem 3.3 in Li & Ling (2012)
and Theorem 2.3 in Li et al. (2013).

3·3. Model selection

To select the order p of model (1), we consider the Bayesian information criterion,

BIC(p)= n1 log σ̂ 2
1n + (p + 1) log n1 + n2 log σ̂ 2

2n + (p + 1) log n2. (3)

Similarly, we can define the Akaike information criterion, AIC, and the corrected AIC. Let p̂n =
argmin0�p�pmax

BIC(p), where pmax is a predetermined large order.

THEOREM 5. If pmax � p0 and Assumptions 1–4 hold, then pr( p̂n = p0)→ 1 as n → ∞, where p0 is
the true order, i.e., |φ0p0 | + |ψ0p0 |> 0.

We can show that minimization of the AIC tends to select an order that is greater than or equal to p0.
Wong & Li (1998) suggested information criteria for selecting the order of threshold models, and they are
similar in form to (3). Moreover, we can consider different orders, say p1 and p2, for the two regimes of
model (1) in the information criteria proposed above.

4. NUMERICAL STUDIES

4·1. Simulation experiment

In an experiment to evaluate the information criteria in § 3·3, two data-generating processes are
employed. The first is a three-regime threshold autoregressive model,

yt =

⎧⎪⎨
⎪⎩

−0·02yt−1 + 0·76yt−2 + εt , yt−2 � −0·9,
−0·70yt−1 + 0·20yt−2 + εt , −0·9< yt−2 � 0·5,

0·65yt−1 + 0·32yt−2 + εt , 0·5< yt−2,

and the second is a hysteretic autoregressive model with the same structure in the lower and upper regimes
and the same delay and boundary parameters, where {εt } are independent random variables with the stan-
dard normal distribution. These models both have two boundary or threshold parameters.

We consider sample sizes, n = 200, 400 and 800, with 1000 replications for each sample size and data-
generating process. The hysteretic model and three-regime threshold model are both fitted to each gen-
erated series with dmax = 4, and the values of a and b are taken to be the 10th and 90th percentiles of
each sample, respectively. The AIC and BIC are used in turn to select the model and order p with pmax = 4.
For the information criteria for the threshold model, see Wong & Li (1998). Table 1 lists the percentages
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Table 2. Information criteria of six fitted models

HAR AR TAR3-A TAR3-B TAR2-A TAR2-B

BIC 1568·06 1692·45 1610·86 1588·96 1577·90 1575·48
AIC 1512·80 1651·67 1522·54 1529·62 1522·83 1526·01
AICc 1820·95 1955·76 1842·17 1842·99 1831·02 1833·74

AICc, corrected AIC; AR, autoregressive model; HAR, hysteretic autoregressive model; TAR3-A
and TAR3-B, three-regime threshold autoregressive model selected by the AIC and BIC, respec-
tively; TAR2-A and TAR2-B, two-regime threshold autoregressive model selected by the AIC and
BIC, respectively.

of correctly selected, overfitted, underfitted and wrongly selected models. Wrong selection refers to the
case of a threshold model being selected for a hysteretic process or a hysteretic model being chosen for a
threshold process. The percentages of correct selection increase for both the AIC and BIC as sample size n
increases, whilst the AIC has a slight tendency to select a bigger model even when n = 800. A larger pro-
portion of hysteretic processes is wrongly selected as threshold processes, particularly when the sample
size is as small as n = 200. This may be because the hysteretic model includes the two-regime threshold
model as a special case.

4·2. Annual sunspot numbers

The sequence of Wolf sunspot numbers is very popular in time series analysis, and various linear and
nonlinear models have been applied to explore it. See, for example, the two-regime threshold models in
Tong (1990) and the three-regime threshold models in Tsay (1989). Hysteresis has been observed in some
solar activity cycles (Dmitriev et al., 2002; Suyal et al., 2012), and the sunspot number is a measure of
solar activity. As a result, the hysteretic model may be more suitable for sunspot numbers than the threshold
model.

We consider the annual mean Wolf sunspot numbers from 1700 to 2013, with 314 observations in total.
The hysteretic autoregressive model is first applied to this sequence with dmax = 6, and the values of a and
b are the 10th and 90th percentiles of the data, respectively. We allow the orders in both regimes to differ
for the sake of parsimony. The AIC and BIC are employed to perform model selection with pmax = 13, and
they choose the same model. Moreover, as a comparison, we consider two other classes of competing mod-
els, namely, autoregressive models and three-regime threshold autoregressive models. Both information
criterion select the same autoregressive model but different threshold autoregressive models. As a result,
a total of four models are selected.

The fitted delay parameter is d̂ = 2 for both the hysteretic and threshold models, which is consistent with
the results in Tsay (1989). The Supplementary Material gives the sample autocorrelation functions of the
residuals from these four fitted models, and we can conclude that they are all adequate. Their information
criterion values, including those of the AIC, BIC and corrected AIC, are listed in Table 2. It can be seen that
the hysteretic model outperforms all three other models, especially the autoregressive model.

We also consider the class of two-regime threshold autoregressive models. Two models with different
autoregressive orders are selected by the AIC and BIC. Their information criteria values are also given in
Table 2. As expected, they are larger than the corresponding values of the fitted hysteretic model as the
two-regime threshold model is a special case of the hysteretic model.
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SUPPLEMENTARY MATERIAL
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