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Summary. Estimating conditional quantiles of financial time series is essential for risk
management and many other financial applications. For time series models with conditional
heteroscedasticity, although it is the generalized auto-regressive conditional heteroscedastic
(GARCH) model that has the greatest popularity, quantile regression for this model usually
gives rise to non-smooth non-convex optimization which may hinder its practical feasibility. The
paper proposes an easy-to-implement hybrid quantile regression estimation procedure for the
GARCH model, where we overcome the intractability due to the square-root form of the condi-
tional quantile function by a simple transformation.The method takes advantage of the efficiency
of the GARCH model in modelling the volatility globally as well as the flexibility of quantile re-
gression in fitting quantiles at a specific level. The asymptotic distribution of the estimator is
derived and is approximated by a novel mixed bootstrapping procedure. A portmanteau test
is further constructed to check the adequacy of fitted conditional quantiles. The finite sample
performance of the method is examined by simulation studies, and its advantages over existing
methods are illustrated by an empirical application to value-at-risk forecasting.

Keywords: Bootstrap method; Conditional quantile; Generalized auto-regressive conditional
heteroscedasticity; Non-linear time series; Quantile regression

1. Introduction

Time series models with conditional heteroscedasticity have been known to be greatly successful
at capturing the volatility clustering of financial data since the appearance of Engle’s (1982) auto-
regressive conditional heteroscedastic (ARCH) model and Bollerslev’s (1986) generalized auto-
regressive conditional heteroscedastic (GARCH) model; see Francq and Zakoian (2010). One
of many popular applications of these models is to estimate quantile-based risk measures such
as the value at risk, VaR, and the expected shortfall, and, for such problems, quantile regression
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(Koenker and Bassett, 1978) naturally makes an appealing tool (Engle and Manganelli, 2004;
Francq and Zakoı̈an, 2015).

In the literature, feasible quantile regression has remained challenging for the arguably most
important conditional heteroscedastic time series model: Bollerslev’s (1986) GARCH
model

xt =ηt
√

ht , ht =α0 +
q∑

i=1
αix

2
t−i +

p∑
j=1

βjht−j, .1:1/

where {ηt} are independent and identically distributed (IID) innovations with mean 0 and
variance 1. Denote the τ th quantile of ηt by Qτ ,η and the information set that is available at
time t by Ft . In estimating the conditional quantile of xt in model (1.1), i.e.

Qτ .xt|Ft−1/=Qτ ,η

√(
α0 +

q∑
i=1

αix
2
t−i +

p∑
j=1

βjht−j

)
, 0 < τ < 1, .1:2/

there are two key challenges that make quantile regression highly intractable.

(a) The square root in equation (1.2), along with the check function ρτ .x/=x{τ − I.x < 0/},
leads to a non-smooth objective function which is non-convex even for the ARCH case.

(b) The recursive form of the unobservable {ht} in model (1.1) adds another layer of difficulty
to the already complicated theoretical derivation and numerical optimization.

Before introducing our approach to addressing these challenges, consider the following vari-
ant of model (1.1), i.e. Taylor’s (1986) linear GARCH model

yt =σt"t , σt =α0 +
q∑

i=1
αi|yt−i|+

p∑
j=1

βjσt−j, .1:3/

where {"t} are IID innovations with mean 0. Denote the τ th quantile of "t by Qτ ,". Note that
challenge (a) is never an issue for model (1.3), as

Qτ .yt|Ft−1/=
(
α0 +

q∑
i=1

αi|yt−i|+
p∑

j=1
βjσt−j

)
Qτ ,", 0 < τ < 1:

If there were no σt−j in model (1.3), the problem would be just a linear quantile regression,
which was considered in Koenker and Zhao (1996). For the general case, Xiao and Koenker
(2009) proposed to replace the σt−js with some initial estimates obtained by quantile regression
for sieved ARCH models and thereby circumvented challenge (b). Unfortunately, because of
challenge (a), easy-to-implement quantile regression procedures for Bollerslev’s (1986) original
GARCH model (1.1) have been seemingly impossible.

In this paper, we tackle this open problem by applying a simple transformation to the condi-
tional quantile in equation (1.2). With the square root in equation (1.2) in mind, we naturally
look for a transformation T.·/ which is

(a) the inverse of the square-root function in some sense and
(b) a continuous and non-decreasing function from R to R.

This interestingly leads to T.x/=x2 sgn.x/, where sgn.·/ is the sign function and, then,

T{Qτ .xt|Ft−1/}=Qτ{T.xt/|Ft−1}=
(
α0 +

q∑
i=1

αix
2
t−i +

p∑
j=1

βjht−j

)
T.Qτ ,η/: .1:4/
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The linearity of equation (1.4) enables a convenient hybrid three-step estimation procedure as
follows.

Step 1: obtain initial estimates of {ht} by fitting the GARCH model (1.1) with the Gaussian
quasi-maximum-likelihood method.
Step 2: estimate Qτ{T.xt/|Ft−1} by a weighted linear quantile regression.
Step 3: use the relationship Qτ .xt|Ft−1/ = T −1[Qτ{T.xt/|Ft−1}] to estimate Qτ .xt|Ft−1/,
where T −1.x/=√|x| sgn.x/ is the inverse function of T.·/.
The hybrid procedure proposed contains two main estimation steps with different purposes.

As a preliminary estimation of the global model structure, step 1 exploits the general suitability
of the GARCH model in volatility modelling. Subsequently, the quantile regression in step 2
targets a particular quantile level of interest and allows a more flexible characterization of the
conditional quantile structure while inheriting the GARCH modelling strategy. In the literature,
there are conditional quantile estimation methods that essentially utilize only step 1 or step 2,
and the leading examples are the filtered historical simulation (FHS) method (Kuester et al.,
2006) and the conditional auto-regressive VaR-method called ‘CAViaR’ (Engle and Manganelli,
2004). Roughly speaking, the FHS method uses the GARCH structure only for global estimation
of the volatility, but not for quantile estimation. In contrast, CAViaR focuses on the local
approximation at a particular quantile level, and it adopts the GARCH-type structure only for
quantile estimation. The current paper tries to exploit the GARCH structure in both the global
estimation of the volatility and the local estimation of quantiles, and the hybrid method proposed
can have superior performance in practice, since the actual ‘truth’ usually lies somewhere in
between the global model and the quantile model. More specifically, as the FHS method is
reliant solely on GARCH modelling, it is less robust than the proposed method when the
quantile structure actually varies in shape across the quantile levels, which is a feature that is
frequently encountered in practice (Engle and Manganelli, 2004). Although CAViaR imposes
the structure at only a particular quantile level and offers full flexibility, it can lack efficiency
at commonly used quantile levels, e.g. τ = 0:05 and τ = 0:01, where the data are very sparse.
Moreover, the computation of the CAViaR method is generally challenging. The hybrid method
proposed combines the advantages of both approaches and is supposed to be more potent in
practice.

As the estimation of the asymptotic covariance matrix of the estimator is complicated by the
innovation density function that is involved, a bootstrapping procedure is needed. A straight-
forward approach is to adopt the random-weighting bootstrap method in Jin et al. (2001) in
both steps 1 and 2, where the minimands of the corresponding objective functions are perturbed
by random weights. By replacing the first perturbation with sample averaging, we alternatively
propose a novel mixed method to avoid repeating the optimization in step 1 many times. As
a result, the computation time is reduced significantly. Furthermore, we construct a portman-
teau test to check the adequacy of fitted conditional quantiles based on the residual quantile
auto-correlation function (QACF) in Li et al. (2015).

The rest of the paper is organized as follows. Sections 2 and 3 propose the hybrid estimation
and mixed bootstrapping procedures, and Section 4 proposes the portmanteau test. Section
5 presents the simulation experiments, and Section 6 provides an empirical analysis on VaR-
forecasting. Section 7 concludes with a short discussion. Appendix A presents proof sketches
of the theorems and, for brevity, the detailed proofs are provided in the on-line supplementary
material. Throughout the paper, ‘→d’ denotes convergence in distribution, op.1/ denotes a
sequence of random variables converging to 0 in probability and oÅ

p.1/ corresponds to the
bootstrap probability space.
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The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Hybrid conditional quantile estimation

2.1. The proposed hybrid estimation procedure
Let {xt} be a strictly stationary and ergodic process generated by model (1.1) with parameter
vector θ= .α0,α1, : : : ,αq,β1, : : : ,βp/′, where α0 >0, αi �0 for 1� i�q and βj �0 for 1� j �p;
see Bollerslev (1986). The necessary and sufficient condition for the existence of a unique strictly
stationary and ergodic solution to the model is given in Bougerol and Picard (1992). Let Ft be
the σ-field that is generated by {xt , xt−1, : : :}, and let bτ =T.Qτ ,η/ and θτ =bτ θ, where Qτ ,η is
the τ th quantile of ηt and T.x/=x2 sgn.x/. Then, the τ th quantile of the transformed variable
yt =T.xt/ conditional on Ft−1 is

Qτ .yt|Ft−1/=bτ

(
α0 +

q∑
i=1

αix
2
t−i +

p∑
j=1

βjht−j

)
=θ′

τ zt , 0 < τ < 1, .2:1/

where zt = .1, x2
t−1, : : : , x2

t−q, ht−1, : : : , ht−p/′. Note that, if {ht} were observable, then we would
be able to estimate Qτ .yt|Ft−1/ by linear quantile regression.

For 0 < w < w and 0 <ρ0 < 1 with pw <ρ0, define Θ ={θ :β1+ : : : +βp �ρ0, w�min.α0,α1,
: : : ,αq,β1, : : : ,βp/ � max.α0,α1, : : : ,αq,β1, : : : ,βp/ � w} ⊂ R

p+q+1
+ , where R+ = .0, ∞/; see

Berkes and Horváth (2004). Let the true value of θ be θ0 = .α00,α01, : : : ,α0q,β01, : : : ,β0p/′,
and let θτ0 =bτ θ0. Define ht.θ/ recursively by

ht.θ/=α0 +
q∑

i=1
αix

2
t−i +

p∑
j=1

βjht−j.θ/: .2:2/

Then ht.θ0/=ht . As ht.θ/ in equation (2.2) depends on infinite past observations, initial values
for {x2

0, : : : , x2
1−q, h0, : : : , h1−p} are needed. We set them to m−1Σm

t=1x2
t for a fixed number m,

say m = 5 in our numerical studies, and denote the resulting ht.θ/ by h̃t.θ/; fixing the initial
values will not affect our asymptotic results.

We propose the hybrid conditional quantile estimation procedure as follows.

Step 1 (estimation of the global model structure): perform the Gaussian quasi-maximum
likelihood estimation of model (1.1),

θ̃n =arg min
θ∈Θ

n∑
t=1

l̃t .θ/, .2:3/

where l̃t .θ/=x2
t =h̃t.θ/+ log{h̃t.θ/}; see Francq and Zakoian (2004). Then compute the initial

estimates of {ht} as h̃t = h̃t.θ̃n/.
Step 2 (quantile regression at a specific level): perform the weighted linear quantile regression
of yt on z̃t = .1, x2

t−1, : : : , x2
t−q, h̃t−1, : : : , h̃t−p/′ at quantile level τ :

θ̂τn =arg min
θτ

n∑
t=1

h̃
−1
t ρτ .yt −θ′

τ z̃t/: .2:4/

Thus the τ th conditional quantile of yt can be estimated by Q̂τ .yt|Ft−1/= θ̂
′
τnz̃t .

Step 3 (transforming back to xt): estimate the τ th conditional quantile of the original obser-
vation xt by Q̂τ .xt|Ft−1/=T −1.θ̂

′
τnz̃t/, where T −1.x/=√|x| sgn.x/.
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Assumption 1.

(a) θ0 is in the interior of Θ;
(b) η2

t has a non-degenerate distribution with E[η2
t ]=1;

(c) the polynomials Σq
i=1αix

i and 1−Σp
j=1βjxj have no common root;

(d) E[η4
t ] <∞.

Assumption 2. The density f.·/ of "t =T.ηt/ is positive and differentiable almost everywhere
on R, with its derivative ḟ satisfying that supx∈R |ḟ .x/|<∞.

Assumption 1 was used by Francq and Zakoian (2004) to ensure the consistency and asymp-
totic normality of the Gaussian quasi-maximum-likelihood estimator (QMLE) θ̃n, which is
known as the sharpest result. It implies only a finite fractional moment of xt , i.e. E|xt|2δ0 <∞
for some δ0 > 0 (Berkes et al., 2003; Francq and Zakoian, 2004). For the GARCH model, im-
posing a higher order moment condition on xt would reduce the available parameter space Θ;
see Francq and Zakoian (2010), chapter 2.4.1. Assumption 2 is made for brevity of the technical
proofs, while it suffices to restrict the positiveness of f.·/ and the boundedness of |ḟ .·/| in a
small and fixed interval [bτ − r, bτ + r] for some r> 0.

Let κ1 =E[η2
t I.ηt < Qτ ,η/]− τ and κ2 =E[η4

t ]−1. Define the .p+q+1/× .p+q+1/ matri-
ces J =E[h−2

t {@ht.θ0/=@θ}{@ht.θ0/=@θ′}], Ω0 =E[ztz
′
t ], Ωi =E[h−i

t ztz
′
t ], Hi =E[h−i

t zt@ht.θ0/=@θ′]
and Γi =E[h−i

t ztΣ
p
j=1β0j@ht−j.θ0/=@θ′] for i=1 and i=2,

Σ1 =Ω−1
2

{
τ − τ2

f 2.bτ /
Ω2 + κ1bτ

f.bτ /
.Γ2J−1H ′

2 +H2J−1Γ′
2/+κ2b2

τΓ2J−1Γ′
2

}
Ω−1

2 .2:5/

and

Σ2 =Ω−1
1

{
τ − τ2

f 2.bτ /
Ω0 + κ1bτ

f.bτ /
.Γ1J−1H ′

1 +H1J−1Γ′
1/+κ2b2

τΓ1J−1Γ′
1

}
Ω−1

1 :

Theorem 1. If assumptions 1 and 2 hold, then
√

n.θ̂τn −θτ0/→d N.0, Σ1/.

The weights {h̃
−1
t } in equation (2.4) are used to improve the efficiency, as yt −Qτ .yt|Ft−1/=

ht."t −bτ /. Removing the weights gives the unweighted estimator

θ̌τn =arg min
θτ

n∑
t=1

ρτ .yt −θ′
τ z̃t/,

and, as the following corollary shows, the asymptotic normality of θ̌τn requires a higher order
moment condition on xt , which will entail a smaller available parameter space.

Corollary 1. If E|xt|4+ι0 <∞ for some ι0 > 0, and assumptions 1 and 2 hold, then
√

n.θ̌τn −
θτ0/→d N.0, Σ2/.

For the ARCH case, we can show that Σ2 − Σ1 is always non-negative definite, i.e. θ̂τn is
asymptotically more efficient than θ̌τn. A general comparison of Σ1 and Σ2 for the GARCH
model is very difficult because of the complicated forms of the two matrices. However, given
the true parameter vector, the innovation distribution and τ , we can obtain theoretical values
of the constants bτ , f.bτ /, κ1 and κ2 and estimate all matrices that are involved in Σ1 and Σ2
by the corresponding sample averages, based on a generated sequence with a large sample size.
Then, we can obtain the asymptotic relative efficiency of θ̂τn to θ̌τn, defined as ARE.θ̂τn, θ̌τn/=
.|Σ2|=|Σ1|/1=.p+q+1/, where ‘| · |’ is the determinant of a matrix; see Serfling (1980). As shown
in the on-line supplementary material, the weighted estimator is always asymptotically more
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efficient than the unweighted estimator, i.e. ARE.θ̂τn, θ̌τn/ > 1, for GARCH.1, 1/ models with
different parameter values, innovation distributions and quantile levels. Therefore, we shall
focus on the weighted estimator θ̂τn from now on.

Corollary 2. If the conditions in theorem 1 hold, then

Q̂τ .yn+1|Fn/−Qτ .yn+1|Fn/=u′
n+1.θ̃n −θ0/+ z′

n+1.θ̂τn −θτ0/+op.n−1=2/,

where un+1 =bτ Σp
j=1β0j@hn+1−j.θ0/=@θ.

When bτ �=0, it further holds for the τ th conditional quantile estimator of xn+1 that

Q̂τ .xn+1|Fn/−Qτ .xn+1|Fn/= u′
n+1.θ̃n −θ0/+ z′

n+1.θ̂τn −θτ0/

2
√|bτhn+1|

+op.n−1=2/: .2:6/

In practice, multiple quantile levels are often considered simultaneously, say τ1 <τ2 <: : :<τK.
Although {Q̂τk .yn+1|Fn/}K

k=1 from the proposed procedure may not be monotonically increas-
ing in k, it is convenient to employ the rearrangement method in Chernozhukov et al. (2010) to
fix the quantile crossing problem after the estimation.

2.2. Relationship with existing methods
In this subsection, we discuss the relationship between the hybrid method proposed and two
important approaches in the literature: the FHS method (Kuester et al., 2006) and CAViaR
(Engle and Manganelli, 2004).

We first consider the FHS method. Note that Qτ .yt|Ft−1/ = θ′
τ zt = bτht . If we ignore the

GARCH structure and consider a simple weighted linear quantile regression only for the pa-
rameter bτ in the second stage, we have

b̃τn =arg min
b

n∑
t=1

h̃
−1
t ρτ .yt −bh̃t/: .2:7/

It is not difficult to see that b̃τn is just the τ th empirical quantile of {yt=h̃t}. Thus, the corre-
sponding procedure, with a simplified second-stage estimation, reduces to the FHS method,
with the estimates Q̂τ .yt|Ft−1/ = b̃τnh̃t = θ̃

′
τnz̃t , where θ̃τn = b̃τnθ̃n is the corresponding FHS

estimator of θτ . The FHS method relies heavily on the global GARCH structure to fit the con-
ditional quantiles. Specifically, as it allows only bτ to change across the quantiles, it will suffer
from inflexibility in practice, since the real data rarely behave exactly like a GARCH model. The
additional simulation results in the on-line supplementary material also demonstrate that the
FHS method always has much larger biases than the method proposed.

In contrast, applying the CAViaR method of Engle and Manganelli (2004) to the transformed
observations yt by assuming the linear form (2.1), we have

ϑ̂τn =arg min
ϑ

n∑
t=1

ρτ{yt −ϑ′vt.ϑ/}, .2:8/

where vt.ϑ/= .1, x2
t−1, : : : , x2

t−q, qt−1.ϑ/, : : : , qt−p.ϑ//′ with qs.ϑ/=ϑ′vs.ϑ/. Unlike the proposed
θ̂τn and the FHS estimator θ̃τn which both converge to θτ0 = bτ θ0, the CAViaR estimator ϑ̂τn

converges to ϑτ0 := .bτα00, bτα01, : : : , bτα0q,β01, : : : ,β0p/′. This approach will lead to the un-
weighted estimator θ̌τn in the Section 2.1 if we first obtain initial estimates of {qt.ϑ/}, and hence
those of vt.ϑ/ in equation (2.8), by replacing ϑ with the more efficient Gaussian QMLE θ̃n, and
then perform quantile regression in equation (2.8). As a result, CAViaR is even less efficient
than the unweighted method in Section 2.1, although it enjoys greater flexibility than the FHS



Hybrid Quantile Regression Estimation 981

method since it imposes a structure at only the quantile level τ . Moreover, the computation of
CAViaR is generally challenging, which actually requires grid search.

We may interpret the method proposed as a hybrid version of FHS and CAViaR. It combines
the efficiency of the former and the flexibility of the latter and hence may perform better in
practice. However, when the data are exactly generated by a GARCH model, the proposed
estimator θ̂τn may be less efficient than the FHS estimator θ̃τn. Let

Σ3 = τ − τ2

f 2.bτ /
θ0θ

′
0 + κ1bτ

f.bτ /
Σ0 +κ2b2

τ .Σ0 +J−1 −θ0θ
′
0/,

where β̄0 = .0, : : : , 0,β01, : : : ,β0p/′ ∈Rp+q+1 and Σ0 =θ0β̄
′
0 + β̄0θ

′
0. If the conditions in theorem 1

hold, we can show that
√

n.θ̃τn −θτ0/→d N.0, Σ3/; see also Gao and Song (2008) and Francq and
Zakoı̈an (2015). In particular, for ARCH models, Σ1 and Σ3 reduce to .τ − τ2/J−1=f 2.bτ / and
.τ − τ2/θ0θ

′
0=f 2.bτ /+κ2b2

τ .J
−1 −θ0θ

′
0/ respectively. Then, we can further show that Σ3 −Σ1 is

non-negative definite if and only if .τ − τ2/=f 2.bτ / −κ2b2
τ � 0, which depends on the specific

innovation distribution and quantile level τ . For the GARCH model, similarly to our discussion
on the unweighted estimator in Section 2.1, we have computed the ARE of the proposed esti-
mator θ̂τn to the FHS estimator θ̃τn for GARCH.1, 1/ models for various parameter settings,
innovation distributions and quantile levels. As expected, the FHS estimator θ̃τn is asymptoti-
cally more efficient in general, whereas the proposed estimator θ̂τn can be asymptotically more
efficient when {ηt} become more heavy tailed; see the on-line supplementary material for details.

3. A mixed bootstrapping procedure

To circumvent difficulties due to the density function in the asymptotic covariance matrix in
theorem 1, we propose a bootstrapping procedure to approximate the asymptotic distribution
of θ̂τn, which benefits from both the convenience of the random-weighting bootstrap method
in Jin et al. (2001) and the time efficiency of sample averaging.

From the proof of theorem 1, the Gaussian QMLE θ̃n affects the asymptotic distribu-
tion of the proposed estimator θ̂τn through the relationship

√
n.θ̂τn − θτ0/ =Ω−1

2 T1n=f.bτ / −
bτΩ−1

2 Γ2
√

n.θ̃n −θ0/+op.1/, where T1n =n−1=2Σn
t=1ψτ ."t −bτ /zt=ht , with ψτ .x/=τ − I.x<0/.

Apparently, the random-weighting bootstrap should be incorporated in both steps 1 and 2,
leading to the following bootstrapping procedure.

Step 1: perform the randomly weighted Gaussian QMLE

θ̃
Å
n =arg min

θ∈Θ

n∑
t=1

ωt l̃t .θ/, .3:1/

where {ωt} are IID non-negative random weights with mean and variance both equal to 1,
and then compute the initial estimates of {ht} as h̃

Å
t = h̃t.θ̃

Å
n /.

Step 2: perform the randomly weighted quantile regression

θ̂
Å
τn =arg min

θτ

n∑
t=1

ωt h̃t
−1
ρτ .yt −θ′

τ z̃
Å
t /, .3:2/

where z̃Å
t = .1, x2

t−1, : : : , x2
t−q, h̃

Å
t−1, : : : , h̃

Å
t−p/′.

Step 3: calculate the conditional quantile estimate Q̂
Å
τ .xt|Ft−1/=T −1.θ̂

Å′
τnz̃Å

t /.

The purpose of the bootstrapping procedure is to avoid estimating the density f.bτ / that is
involved in the asymptotic covariance matrix Σ1. Observe that no density actually appears in
the asymptotic covariance matrix of the Gaussian QMLE θ̃n. This motivates us to replace the
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optimization in step 1 above with a simple sample averaging. Note that

√
n.θ̃

Å
n − θ̃n/= 1√

n

n∑
t=1

.ωt −1/ξt +opÅ.1/,

√
n.θ̃n −θ0/= 1√

n

n∑
t=1

ξt +op.1/,
.3:3/

where ξt = J−1.|yt|=ht − 1/h−1
t {@ht.θ0/=@θ} and θ̃

Å
n is defined as in expression (3.1); see also

Francq and Zakoian (2004). The matrix J =E[h−2
t {@ht.θ0/=@θ}{@ht.θ0/=@θ′}] can be estimated

consistently by J̃ =n−1Σn
t=1h̃

−2
t {@h̃t.θ̃n/=@θ}{@h̃t.θ̃n/=@θ′}. Therefore, step 1 can be replaced by

the following step.

Step 1′: calculate the estimator θ̃
Å
n by

θ̃
Å
n = θ̃n − J̃

−1

n

n∑
t=1

.ωt −1/

(
1− |yt|

h̃t

)
1

h̃t

@h̃t.θ̃n/

@θ
: .3:4/

Combining steps 1′, 2 and 3, we have a mixed bootstrapping procedure.

Assumption 3. The random weights {ωt} are IID non-negative random variables with mean
and variance both equal to 1, satisfying E|ωt|2+κ0 <∞ for some κ0 > 0.

Theorem 2. Suppose that E|ηt|4+2ν0 <∞ for some ν0 > 0 and assumptions 1–3 hold. Then,
conditionally on Fn,

√
n.θ̂

Å
τn − θ̂τn/→d N.0, Σ1/ in probability as n→∞, where Σ1 is defined

as in theorem 1.

Corollary 3. Under the conditions of theorem 2, it holds that

Q̂
Å
τ .yn+1|Fn/− Q̂τ .yn+1|Fn/=u′

n+1.θ̃
Å
n − θ̃n/+ z′

n+1.θ̂
Å
τn − θ̂τn/+oÅ

p.n−1=2/,

where un+1 is defined as in corollary 2.

By corollaries 2 and 3, along with the asymptotic results for θ̃
Å
n and θ̂

Å
τn in the proof of theorem

2, the confidence interval for the conditional quantile Qτ .xn+1|Fn/ can be easily constructed on
the basis of the bootstrap sample {Q̂

Å
τ .xn+1|Fn/}, where Q̂

Å
τ .xn+1|Fn/ = T −1{Q̂

Å
τ .yn+1|Fn/};

see also Spierdijk (2016).
The first-order validity of the mixed bootstrapping procedure proposed is established by

theorem 2 and corollary 3. Unfortunately, the second-order correctness (Lahiri, 2003) is almost
impossible to achieve. In fact, as long as quantile regression is employed, because of the non-
smoothness of the loss function ρτ .·/, it will be very difficult to attain second-order correctness
for the bootstrapping procedure; see also Horowitz (1998). Note also that the op.1/ term in
expression (3.3) plays a non-negligible role in the Edgeworth expansion of

√
n.θ̃n −θ0/ (Linton,

1997) but is ignored by θ̃
Å
n in step 1′. Hence, the second-order correctness has already been lost

when we use the much faster sample averaging method in step 1′ to replace the optimization
in step 1. However, the sacrifice is worthwhile, as the second-order correctness is unachievable
anyway because of the non-smooth objective function in step 2. Actually, in the literature,
bootstrap methods with second-order correctness are still limited to the GARCH.1, 1/ model
and are unavailable for the general GARCH model (Corradi and Iglesias, 2008; Jeong, 2017).

4. Diagnostic checking for conditional quantiles

On the basis of the proposed procedures in Sections 2 and 3, we next construct a portmanteau
test to check the adequacy of fitted conditional quantiles.
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Let "t,τ =ht
−1{yt −Qτ .yt|Ft−1/}= "t −bτ . We define the QACF of {"t,τ} at lag k as

ρk,τ =qcorrτ ."t,τ , |"t−k,τ |/= E[ψτ ."t,τ /|"t−k,τ |]√{.τ − τ2/σ2
a,τ}

, k =1, 2, : : : ,

where σ2
a,τ = var.|"t,τ |/ = E[|"t,τ | −μa,τ ]2, with μa,τ = E|"t,τ |; see also the QACF in Li et al.

(2015) and the absolute residual ACF in Li and Li (2005). If Qτ .xt|Ft−1/ is correctly specified
by model (1.2), then E[ψτ ."t,τ /|Ft−1] is 0 and so is ρk,τ for any k �1.

Accordingly, let "̂t,τ = h̃t
−1

.yt − θ̂′
τnz̃t/, and then the corresponding residual QACF at lag k can

be calculated as rk,τ = .τ − τ2/−1=2σ̂−1
a,τn

−1Σn
t=k+1ψτ ."̂t,τ /|"̂t−k,τ |, where σ̂2

a,τ =n−1Σn
t=1.|"̂t,τ |−

μ̂a,τ /
2, with μ̂a,τ = n−1Σn

t=1|"̂t,τ |. For a predetermined positive integer K, we first derive the
asymptotic distribution of R= .r1,τ , : : : , rK,τ /

′.
Let εt = .|"t,τ |, |"t−1,τ |, : : : , |"t−K+1,τ |/′ and Ξ=E[εtε′t ], and define the K× .p+q+1/ matrices

D1 = E[h−1
t εt−1z′

t ], D2 = E[h−1
t εt−1Σ

p
j=1β0j@ht−j.θ0/=@θ′] and D3 = E[h−1

t εt−1@ht.θ0/=@θ′]. In
addition, let P =D2 −D1Ω−1

2 Γ2, Q=D3 −D1Ω−1
2 H2, Ω3 =D1Ω−1

2 D′
1 and

Σ4 =σ−2
a,τ

{
Ξ−Ω3 + κ1bτf.bτ /

τ − τ2 .QJ−1P ′ +PJ−1Q′/+ κ2b2
τf

2.bτ /

τ − τ2 PJ−1P ′
}

: .4:1/

Theorem 3. If E|ηt|4+2ν0 < ∞ for some ν0 > 0 and assumptions 1 and 2 hold, then√
nR→d N.0, Σ4/, where Σ4 is a positive definite matrix.

Theorem 3 implies that the portmanteau test statistic Q.K/ = nR′Σ̂−1
4 R converges to a χ2-

distribution with K degrees of freedom as n→∞, where Σ̂4 is a consistent estimator of Σ4. Note
that, even for the ARCH case, the asymptotic covariance matrix Σ4 =σ−2

a,τ .Ξ−D1J−1D′
1/ still

depends on the parameter vector θ0, the density f.·/ and the quantile level τ in a complicated
way.

We next employ the bootstrap method to approximate Σ4. Let "̂Å
t,τ = h̃

−1
t .yt − θ̂

Å′
τnz̃Å

t /, rÅ
k,τ =

.τ − τ2/−1=2σ̂−1
a,τn

−1Σn
t=k+1ωtψτ ."̂

Å
t, τ /|"̂Å

t−k,τ | and RÅ = .rÅ
1,τ , : : : , rÅ

K,τ /
′.

Theorem 4. Suppose that the conditions in theorem 2 hold. Then, conditionally on Fn,√
n.RÅ −R/→d N.0, Σ4/ in probability as n→∞, where Σ4 is defined as in theorem 3.

In step 3 in Section 3, we can calculate RÅ and T .1/ =√
n.RÅ −R/. Then, repeating steps 1′ and

2 for B−1 times yields {T .1/, : : : , T .B/}, and Σ4 can be approximated by the sample covariance
matrix ΣÅ

4 of {T .i/}B
i=1. Therefore, we reject the null hypothesis that rk,τ with 1 � k � K are

jointly insignificant if Q.K/ exceeds the 0.95th theoretical quantile of χ2
K. In addition, we reject

the null hypothesis that rk,τ is individually insignificant if
√

nrk,τ falls outside the range between
the 0.025th and 0.975th empirical quantiles of {T

.i/
k }B

i=1, where T
.i/
k is the kth element of T .i/.

5. Simulation studies

This section contains three simulation experiments for evaluating the finite sample performance
of the estimation, bootstrapping and diagnostic checking procedures proposed.

In the first experiment, we focus on the proposed estimator θ̂τn and the bootstrapping approx-
imation of its asymptotic distribution. The data are generated from the GARCH.1, 1/ model
with .α0,α1,β1/ = .0:1, 0:15, 0:8/, where the innovations {ηt} are standard normal or follow
the standardized Student t5-distribution with unit variance. We consider three sample sizes,
n = 500, 1000, 2000, with 1000 replications generated for each sample size, and two quantile
levels: τ =0:05 and τ =0:1. Four distributions for the random weights {ωt} in the bootstrapping
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Table 1. Bias, ESD and ASD for θ̂τn at τ D0.05 or τ D0.1, for normal or Student t5-distributed innovations,
where ASDi corresponds to random weight Wi for i D 1, 2, 3, 4, and α0, α1 and β1 represent corresponding
elements of θ̂τn

n Results for normal distribution Results for Student’s t5-distribution

Bias ESD ASD1 ASD2 ASD3 ASD4 Bias ESD ASD1 ASD2 ASD3 ASD4
(×10) (×10) (×10) (×10) (×10) (×10) (×10) (×10) (×10) (×10) (×10) (×10)

τ =0:05
500 α0 −0:24 10.20 11.48 11.77 11.28 11.57 −0:61 10.42 13.88 14.85 13.71 15.13

α1 −0:07 3.05 3.26 3.25 3.26 3.26 −0:75 3.89 4.53 4.08 4.27 4.34
β1 0.03 7.52 8.15 8.65 8.12 8.34 0.32 8.33 11.38 13.63 11.21 12.61

1000 α0 0.20 6.06 7.00 7.09 7.03 7.06 −0:30 6.84 8.46 8.12 7.81 8.18
α1 0.08 2.24 2.31 2.29 2.30 2.30 −0:25 2.60 2.89 2.73 2.79 2.81
β1 −0:25 4.76 5.25 5.34 5.28 5.30 −0:04 5.81 7.06 7.30 6.72 7.18

2000 α0 0.24 4.38 4.68 4.71 4.69 4.70 −0:05 4.72 5.18 5.11 5.00 5.20
α1 0.07 1.59 1.62 1.61 1.61 1.61 −0:16 1.84 1.98 1.91 1.94 1.95
β1 −0.24 3.48 3.60 3.63 3.61 3.61 −0:09 4.20 4.50 4.59 4.41 4.62

τ =0:1
500 α0 −0:09 6.47 7.22 7.28 7.12 7.31 −0:34 5.28 7.40 7.98 7.19 7.65

α1 0.00 1.90 2.07 2.04 2.06 2.06 −0:32 1.86 2.10 1.99 2.04 2.05
β1 −0:14 4.75 5.16 5.33 5.14 5.26 0.21 4.23 6.11 7.28 5.88 6.45

1000 α0 0.00 4.11 4.39 4.43 4.41 4.42 −0:14 3.55 4.33 4.30 4.17 4.37
α1 0.06 1.38 1.44 1.43 1.44 1.44 −0:10 1.26 1.38 1.34 1.36 1.36
β1 −0.13 3.17 3.30 3.33 3.31 3.32 0.00 2.92 3.66 3.86 3.59 3.83

2000 α0 0.07 2.74 2.98 2.99 2.98 2.98 0.08 2.54 2.75 2.71 2.67 2.79
α1 0.04 0.96 1.01 1.01 1.01 1.01 −0:07 0.89 0.95 0.94 0.94 0.95
β1 −0:14 2.14 2.29 2.30 2.29 2.29 −0:14 2.24 2.39 2.43 2.34 2.46

procedure are considered: the standard exponential distribution W1, the Rademacher distribu-
tion W2, which takes the value 0 or 2, each with probability 0.5 (Li et al., 2014), Mammen’s
two-point distribution W3, which takes the value .−√

5+3/=2 with probability .
√

5+1/=2
√

5 or
the value .

√
5+3/=2 with probability 1− .

√
5+1/=2

√
5 (Mammen, 1993), and a mixture of the

standard exponential distribution and the Rademacher distribution W4, with mixing probability
0.5.

The bias, empirical standard deviation (ESD) and asymptotic standard deviation (ASD)
for θ̂τn are reported in Table 1, where the ASDs are estimated by the proposed bootstrapping
procedure using different distributions for the random weights. We have the following findings:

(a) the biases are all small;
(b) as n or τ increases, the bias and standard deviations decrease, and the ASDs become

closer to the corresponding ESDs;
(c) the performance of the bootstrapping approximation is insensitive to the choice of random

weights;
(d) the ASDs appear to be closer to the corresponding ESDs when {ηt} are normal than

when they follow the Student t5-distribution;
(e) when τ =0:05, the standard deviations for the normal distribution are smaller than those

for the Student t5-distribution, whereas the opposite holds for most cases when τ =0:1.

Generally speaking, for GARCH models, heavier tails of {ηt} will lead to lower efficiency of the
Gaussian QMLE and higher efficiency of the quantile regression, which results in mixed perfor-
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Table 2. Bias, ESD and ASD for the residual QACF rk,τ at τ D 0.05 or τ D 0.1 and k D 2, 4, 6, for normal or
Student t5-distributed innovations

n k Results for normal distribution Results for Student’s t5-distribution

τ =0:05 τ =0:1 τ =0:05 τ =0:1

Bias ESD ASD Bias ESD ASD Bias ESD ASD Bias ESD ASD
(×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100) (×100)

500 2 1.27 4.88 6.72 0.67 4.35 5.34 0.78 4.36 5.91 0.69 4.32 4.82
4 0.90 4.88 6.83 0.47 4.59 5.43 0.69 4.67 5.94 0.42 4.31 4.84
6 1.04 4.91 6.81 0.61 4.64 5.44 0.37 4.75 6.03 0.08 4.52 4.90

1000 2 0.48 3.24 4.05 0.36 3.13 3.44 0.30 3.13 3.57 0.25 3.14 3.26
4 0.50 3.34 4.09 0.15 3.19 3.51 0.35 3.13 3.54 0.30 3.01 3.17
6 0.43 3.29 4.13 0.30 3.16 3.54 0.18 3.35 3.66 −0:01 3.20 3.29

2000 2 0.29 2.23 2.59 0.20 2.23 2.33 0.28 2.15 2.30 0.09 2.21 2.23
4 0.15 2.26 2.62 0.02 2.14 2.36 0.10 2.26 2.31 0.10 2.19 2.21
6 0.16 2.25 2.63 0.14 2.19 2.38 0.15 2.20 2.32 0.04 2.18 2.23

Table 3. Rejection rate of the test statistic Q.K/ for K D6 at the 5% level of significance, for normal or Student
t5-distributed innovations and d D0, 0.3, 0.6

n Results (%) for normal distribution Results (%) for Student’s t5-distribution

τ =0:05 τ =0:1 τ =0:05 τ =0:1

d =0.0 d =0.3 d =0.6 d =0.0 d =0.3 d =0.6 d =0.0 d =0.3 d =0.6 d =0.0 d =0.3 d =0.6

500 2.8 4.8 7.4 3.4 6.9 27.0 1.9 3.8 7.8 3.4 6.5 21.0
1000 3.3 7.2 21.6 4.0 15.7 60.9 3.0 10.6 29.4 4.3 16.3 46.8
2000 4.5 16.1 55.2 4.9 36.5 92.5 5.3 27.9 69.8 4.3 34.3 83.2

mance of the proposed method under different innovation distributions, and the performance
is further affected by the specific parameter values and quantile level.

The second experiment considers the proposed residual QACF rk,τ and the bootstrapping
approximation of its asymptotic distribution. The data and all other settings are the same as
in the previous experiment. For brevity, we present only results for W1 from now on, and the
results for W2, W3 and W4 are provided in the on-line supplementary material, where it is found
that the performance is insensitive to the choice of random weights. Table 2 provides the bias,
ESD and ASD for rk,τ at lags k = 2, 4, 6. Findings (a) and (b) in the previous experiment are
also observed in Table 2. Furthermore, we have repeated the first two experiments by using
τ =0:01 and have found that the sample size may have to be as large as 5000 to achieve a good
approximation.

The third experiment examines the empirical size and power of the test statistic Q.K/. The
data are generated from

xt =√
htηt , ht =0:4+0:2x2

t−1 +dx2
t−4 +0:2ht−1,
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where the departure d = 0, 0.3, 0.6. We conduct conditional quantile estimation based on the
GARCH(1, 1) model assumption; thus, d = 0 corresponds to the size of the test, and d �= 0
corresponds to the power. All other settings are preserved from the previous experiment.
Table 3 reports the rejection rate at the maximum lag K = 6. It can be seen that the rejec-
tion rate increases as either n or the departure d increases. To make the size close to the nominal
rate 5%, the sample size n needs to be as large as 2000 at τ =0:05, whereas n=1000 is sufficient
for τ =0:1. Moreover, as τ increases from 0.05 to 0.1, the increase in the power is larger for the
normal distribution than for the Student t5-distribution. When τ grows closer to 0, the actual
departure in the quantile regression, namely |bτd|, increases, whereas the density f.bτ / decreases
as the data around bτ become more sparse. Consequently, the overall effect of τ on the power
is mixed and depends on the specific innovation distribution.

6. Empirical analysis

In this section, we analyse the daily log-returns of three stock market indices from January 2nd,
2008, to June 30th, 2016: the Standard&Poors S&P500-index, the Dow Jones 30-index and the
Hang Seng index (HSI). The sample sizes are n=2139, 2139, 2130 respectively.

We begin by illustrating the proposed method with the S&P500 data for τ =0:05, i.e. the 1-day
5% VaR. Fig. 1 gives the time plot of the log-returns {xt}. By the estimation procedure proposed,
the initial estimates of {ht} are calculated by h̃t =2:646×10−6 +0:126x2

t−1 +0:858h̃t−1, and the
fitted conditional quantile function is

Q̂0:05.yt|Ft−1/=−4:713×10−7 −0:124x2
t−1 −3:007h̃t−1:

Fig. 1 shows that the residual QACF falls only slightly outside the corresponding 95% confidence
interval at lags 3, 21 and 24, and is well within it at all the other lags. By the diagnostic checking
procedure proposed, the p-values of the portmanteau test Q.K/ are all larger than 0.257 for
K =6, 12, 18, 24, 30, which suggests the adequacy of the fitted conditional quantiles.

Next we examine the forecasting performance of the proposed method for all stock market
indices by using the following rolling procedure: first, conduct the estimation by using the
first 2 years’ data and compute the conditional quantile forecast for the next trading day, i.e.
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Fig. 1. (a) Time plot of daily log-returns ( ) of the S&P500-index from January 2nd, 2008, to June
30th, 2016, and rolling forecasts of the conditional quantiles ( ) at τ D 0.05 from January 4th, 2010, to
June 30th, 2016, with corresponding 95% confidence bounds ( ) and (b) residual QACF of the fitted
GARCH model at τ D0.05, with corresponding 95% confidence bounds
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the forecast of Qτ .xn+1|Fn/; then, advance the forecasting origin by 1 to include one more
observation in the estimation subsample, and repeat the foregoing procedure until the end of
the sample has been reached. See Fig. 1 for an illustration of the rolling forecasts at τ = 0:05
for the S&P500 data, where the corresponding 95% confidence intervals are constructed by the
bootstrapping procedure proposed.

To compare the forecasting performance of the proposed method with existing conditional
quantile estimation methods, we also conduct rolling forecasting for the FHS method that
was discussed in Section 2.2 and four other methods which we call XK1, XK2, CAViaR and
RiskM in what follows. In particular, XK1 and XK2 are adapted versions of the ‘QGARCH1’
and ‘QGARCH2’ methods in Xiao and Koenker (2009) for the GARCH model, where we
first apply the transformation T.·/ to the observed sequence {xt} as in estimation step 1 of the
proposed procedure in Section 2.1. For XK1, the initial estimates of {ht} are obtained by linear
quantile regression at quantile level τ by using the sieve approximation, ht =γ0 +Σm

j=1γjx2
t−j,

where we set m= 3n1=4 as in Xiao and Koenker (2009). For XK2, the initial estimates of {ht}
are obtained by combining the sieve-approximation-based estimation in XK1 over multiple
quantile levels, τi = i=20 for i = 1, 2, : : : , 19, via minimum distance estimation. CAViaR refers
to the indirect GARCH.1, 1/ based CAViaR method in Engle and Manganelli (2004), and we
use the MATLAB code from them for the grid search optimization and the same settings of
initial values for the optimization as in Engle and Manganelli (2004). Finally, RiskM refers
to the conventional RiskMetrics method, which assumes that the data follow the integrated
GARCH.1, 1/ model xt =√

htηt , ht =0:06x2
t−1 +0:94ht−1, where {ηt} are IID standard normal;

see Morgan and Reuters (1996) and Tsay (2010).
We use VaR-backtesting as the primary criterion, and the empirical coverage performance as

the secondary criterion. Specifically, we adopt the following two measures:

(a) the minimum of the p-values of the two VaR-backtests, the likelihood ratio test for correct
conditional coverage in Christoffersen (1998) and the dynamic quantile test in Engle and
Manganelli (2004);

(b) the empirical coverage error, namely the empirical coverage rate (i.e. the proportion of ob-
servations that exceed the corresponding VaR-forecast) minus the corresponding nominal
rate τ .

For the dynamic quantile test, following Kuester et al. (2006), the regressor matrix contains
four lagged hits, Hitt−1, : : : , Hitt−4, and the contemporaneous VaR-estimate, where Hitt is the
indicator of exceedance for the observation at time t. We consider the smaller of the two p-values,
because the conditional coverage and dynamic quantile tests have different null hypotheses and
hence are complementary to each other.

Table 4 presents the results of the two measures for the six estimation methods at the lower
L and upper U 0.01th, 0.025th and 0.05th conditional quantiles, i.e. the 1%, 2.5% and 5%
VaRs for long and short positions. For the S&P500 and Dow 30-data, it can be seen that
none of the methods performs satisfactorily at the lower quantiles. For the upper quantiles
of these two data sets, both XK1 and XK2 perform poorly, whereas the other methods are
generally adequate: all p-values for the hybrid method proposed and RiskM are larger than 0.2
and, despite the small p-value at U5.0 for the Dow 30-data, the FHS method performs fairly
well. For the HSI-data, the FHS method is adequate at all quantiles, and the hybrid method
proposed performs well except for the case of U1.0. In contrast, RiskM performs poorly at the
lower quantiles, and CAViaR is unsatisfactory at U2.5 and U1.0. Therefore, it is clear that, in
terms of the backtesting performance, the method proposed and the FHS method dominate the
other competitors. Indeed, for the three data sets at the six quantile levels, among all methods,
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the method proposed has the largest number of cases where the minimum p-value exceeds 0.2,
whereas the FHS method has the smallest number of cases where the minimum p-value is less
than 0.05.

To determine whether the method proposed or the FHS method is superior, we next take
into account the secondary criterion: the empirical coverage error. To do so, for each method
we count the numbers of cases (among the total of 18 cases) where the absolute value of its
corresponding empirical coverage error is the smallest and second smallest among all methods.
From the right-hand panel of Table 4, the results are 9 and 6 for the method proposed, and 4
and 5 for the FHS method. For the other competitors, the numbers are all much smaller. In
the on-line supplementary material, we also conduct a case-by-case comparison of these two
methods based on a more comprehensive analysis of the backtesting and empirical coverage
results, and it is shown that the method proposed does have a clearly better performance than
the FHS method.

Moreover, we have also performed the foregoing analysis again by using the rearrangement
method of Chernozhukov et al. (2010) to avoid any quantile crossing for the method proposed.
We find that both the corresponding backtesting and the empirical coverage results are almost
unchanged; see the on-line supplementary material for details.

7. Conclusion and discussion

In this paper, our idea of transforming the quantiles enables us first to turn a highly intractable
quantile regression problem into a much simpler linear quantile regression, making the condi-
tional quantile estimation for the GARCH model an easy job. The major novelty of this paper
also lies in the hybrid nature of the estimation method proposed, which enables the conditional
quantile estimator to provide a good balance between the efficiency of Gaussian QMLE and the
flexibility of quantile regression. The hybrid method remedies the different drawbacks of two
important approaches in the literature, i.e. FHS and CAViaR. Consequently, better forecasting
performance can be achieved, as confirmed by our empirical evidence.

Our method can be extended in several directions. First, it is well known that financial time
series can be so heavy tailed that E[η4

t ]=∞ (Mikosch and Stărică, 2000; Mittnik and Paolella,
2003; Hall and Yao, 2003). For such cases, we may alternatively consider methods that are
more robust than Gaussian QMLE for initial estimation of the conditional variances, e.g. the
least absolute deviations estimator of Peng and Yao (2003). Second, our procedure can be ap-
plied to conditional quantile estimation for other conditional heteroscedastic models, including
the asymmetric Glosten–Jagannathan–Runkle–GARCH model (Glosten et al., 1993). Third, al-
though the multivariate GARCH model has been widely used for volatility modelling of multiple
asset returns (Engle and Kroner, 1995), conditional quantile estimation for the corresponding
portfolio return is still an open problem. This paper offers some preliminary ideas on this, which
we leave for future research.
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Appendix A: Proof sketches of theorems 1–4

The following lemma 1 establishes some important moment conditions which are used repeatedly in our
proofs. All detailed proofs are provided in the on-line supplementary material.

Lemma 1. Under assumption 1, for any κ> 0, there is a constant c> 0 such that

(a) E[sup[{ht.θ2/=ht.θ1/}κ :‖θ1 −θ2‖� c, θ1, θ2 ∈Θ]] <∞,
(b) E[sup{‖h−1

t .θ1/@ht.θ2/=@θ‖κ :‖θ1 −θ2‖� c, θ1, θ2 ∈Θ}] <∞,
(c) E[sup{‖h−1

t .θ1/@
2ht.θ2/=@θ@θ′‖κ :‖θ1 −θ2‖� c, θ1, θ2 ∈Θ}] <∞,

(d) E[sup{|h−1
t .θ1/@

3ht.θ2/=@θi@θk@θl|κ :‖θ1 −θ2‖� c, θ1, θ2 ∈Θ}] <∞,

for all 1 � i, k, l � p + q + 1, where ‘‖ · ‖’ is the norm of a matrix or column vector, defined as ‖A‖=√
tr.AA′/=√

Σi,j|aij|2.

A.1. Proof sketch of theorem 1
Let zt.θ/= .1, x2

t−1, : : : , x2
t−q, ht−1.θ/, : : : , ht−p.θ//′, z̃t .θ/= .1, x2

t−1, : : : , x2
t−q, h̃t−1.θ/, : : : , h̃t−p.θ//′. Write zt =

zt.θ0/, z̆t = z̃t .θ0/ and z̃t = z̃t .θ̃n/. Let Ln.θ/=Σn
t=1h̃

−1
t ρτ .yt − θ′z̃t /, L̆n.θ/=Σn

t=1h̃
−1
t ρτ .yt − θ′z̆t / and ĕt,τ =

yt −θ′
τ0z̆t . Applying the identity (Knight, 1998)

ρτ .x−y/−ρτ .x/=−yψτ .x/+
∫ y

0
I.x, s/ds, x �=0, .A:1/

where ψτ .x/= τ − I.x< 0/ and I.x, s/= I.x� s/− I.x�0/, we have that, for any fixed u∈Rp+q+1, Ln.θτ0 +
n−1=2u/− L̆n.θτ0/=−L1n.u/+L2n.u/, where

L1n.u/=
n∑

t=1
ψτ .ĕt,τ /h̃

−1
t ξnt.θ̃n/

and

L2n.u/=
n∑

t=1
h̃

−1
t

∫ ξnt .θ̃n/

0
I.ĕt,τ , s/ds,

with ξnt.θ/= .θτ0 +n−1=2u/′z̃t .θ/− θ′
τ0z̆t . It is worth noting that we define z̆t = z̃t .θ0/ deliberately to cancel

the effect of the initial values in z̃t = z̃t .θ̃n/, which is a crucial step of our proof; see also Zheng et al. (2016).
If we use zt = zt.θ0/ instead of z̆t , then the effect of the initial values, in the order of Cρtζ by lemma S.1 in
the on-line supplementary material, will remain inside the summations of L1n.u/ and L2n.u/, making the
effect asymptotically non-negligible.

To handle L1n.u/ and L2n.u/, we consider the decomposition ξnt.θ̃n/=ξ1nt.θ̃n/+ξ2nt.θ̃n/+ξ3nt.θ̃n/, with
ξ1nt.θ/=n−1=2u′zt +Σp

j=1β
.j/
τ0 .θ−θ0/

′@ht−j.θ0/=@θ, ξ2nt.θ/=n−1=2Σp
j=1u

.j/{ht−j.θ/−ht−j}+Σp
j=1β

.j/
τ0 {ht−j.θ/

−ht−j − .θ−θ0/
′@ht−j.θ0/=@θ} and ξ3nt.θ/=n−1=2Σp

j=1u
.j/{h̃t−j.θ/−ht−j.θ/}+Σp

j=1β
.j/
τ0 [{h̃t−j.θ/−ht−j.θ/}

−{h̃t−j.θ0/−ht−j}], where u.j/ is the .j +q+1/th element of u andβ.j/
τ0 =bτ β0j , for j =1, : : : , p. By carefully

decomposing L1n.u/ and L2n.u/ and handling the remaining initial value effects in h̃
−1
t , as well as repeatedly

applying lemmas 1 and S.1, we can show that

Ln.θτ0 +n−1=2u/− L̆n.θτ0/=−u′{T1n −bτf.bτ /Γ2
√

n.θ̃n −θ0/}+ 1
2 f.bτ /u

′Ω2u

−T2n +T3n +op.1/,

where T1n =n−1=2Σn
t=1ψτ ."t −bτ /zt=ht , T2n = .θ̃n −θ0/

′Σn
t=1ψτ ."t −bτ /Σ

p
j=1π

.j/
t and T3n =0:5f.bτ /.θ̃n −θ0/

′ ×
Σn

t=1Σ
p
j1=1Σ

p
j2=1π

.j1/
t π

.j2/′
t .θ̃n −θ0/, with π.j/

t =β
.j/
τ0 ht

−1@ht−j.θ0/=@θ.
Applying equation (3.3), the central limit theorem and corollary 2 in Knight (1998), together with the

convexity of Ln.·/, we have

√
n.θ̂τn −θτ0/= Ω−1

2

f.bτ /
T1n −bτΩ−1

2 Γ2
√

n.θ̃n −θ0/+op.1/→d N.0, Σ1/, .A:2/

and the proof is complete.
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A.2. Proof sketch of theorem 2
Similarly to the proof of theorem 1, we first let LÅ

n .θ/=Σn
t=1ωt h̃

−1
t ρτ .yt −θ′z̃Å

t / and L̆Å
n .θ/=Σn

t=1ωt h̃
−1
t ρτ .yt −

θ′z̆t /. Applying identity (A.1), for any fixed u ∈ Rp+q+1, we have LÅ
n .θτ0 + n−1=2u/ − L̆Å

n .θτ0/ =−LÅ
1n.u/ +

LÅ
2n.u/, where

LÅ
1n.u/=

n∑
t=1
ωtψτ .ĕt,τ /h̃

−1
t ξÅnt

and

LÅ
2n.u/=

n∑
t=1
ωt h̃

−1
t

∫ ξÅ
nt

0
I.ĕt,τ , s/ds,

with ξÅnt = .θτ0 +n−1=2u/′z̃Å
t − θ′

τ0z̆t . Then, by carefully dealing with decompositions of LÅ
1n.u/ and LÅ

2n.u/
in a way similar to that for the proof of theorem 1, we can show that

LÅ
n .θτ0 +n−1=2u/− L̆Å

n .θτ0/=−u′{T Å
1n −bτf.bτ /Γ2

√
n.θ̃

Å
n −θ0/}+ 1

2 f.bτ /u
′Ω2u

−T Å
2n +T Å

3n +oÅ
p .1/,

where T Å
1n =n−1=2Σn

t=1ωtψτ ."t −bτ /zt=ht , T Å
2n = .θ̃

Å
n −θ0/

′Σn
t=1ωtψτ ."t −bτ /Σ

p
j=1π

.j/
t and T Å

3n =0:5f.bτ /.θ̃
Å
n −

θ0/
′Σn

t=1Σ
p
j1=1Σ

p
j2=1π

.j1/
t π

.j2/′
t .θ̃

Å
n − θ0/. Then, by verifying Liapounov’s condition, we can show that, con-

ditionally on Fn, T Å
1n − T1n →d N{0, τ .1 − τ /Ω2} in probability as n →∞. By the convexity of LÅ

n .·/ and
corollary 2 of Knight (1998),

√
n.θ̂

Å
τn −θτ0/= Ω−1

2

f.bτ /
T Å

1n −bτΩ−1
2 Γ2

√
n.θ̃

Å
n −θ0/+oÅ

p .1/,

which, in conjunction with equations (3.3) and (A.2), yields

√
n.θ̂

Å
τn − θ̂τn/= Ω−1

2

f.bτ /
.T Å

1n −T1n/+ bτΩ−1
2 Γ2J

−1

√
n

n∑
t=1

.ωt −1/
1−|"t |

ht

@ht.θ0/

@θ
+oÅ

p .1/:

Applying Lindeberg’s central limit theorem and the Cramér–Wold device, the proof is complete.

A.3. Proof sketch of theorems 3 and 4
Observe that

1√
n

n∑
t=k+1

ψτ ."̂t,τ /|"̂t−k,τ |= 1√
n

n∑
t=k+1

ψτ ."t,τ /|"t−k,τ |+
n∑

t=k+1
E1nt +

n∑
t=k+1

E2nt +
n∑

t=k+1
E3nt ,

where E1nt = n−1=2{ψτ ."̂t, τ / − ψτ ."t,τ /}|"t−k,τ |, E2nt = n−1=2ψτ ."t, τ /.|"̂t−k,τ | − |"t−k,τ |/ and E3nt = n−1=2 ×
{ψτ ."̂t,τ / −ψτ ."t,τ /}.|"̂t−k, τ | − |"t−k,τ |/. By Taylor series expansions, the fact that

√
n.θ̂τn − θτ0/ = Op.1/

and
√

n.θ̃n − θ0/=Op.1/, lemma 1 and the finite covering theorem, we can show that Σn
t=k+1E2nt =op.1/,

Σn
t=k+1E3nt =op.1/ and

n∑
t=k+1

E1nt =−f.bτ /{d ′
1k

√
n.θ̂τn −θτ0/+bτd

′
2k

√
n.θ̃n −θ0/}+op.1/,

where d1k =E[h−1
t |"t−k,τ |zt ] and d2k =E[h−1

t |"t−k,τ |Σp
j=1β0j@ht−j.θ0/=@θ]. Then, by the law of large numbers

we can verify that μ̂a,τ =μa,τ + op.1/ and σ̂2
a,τ = σ2

a,τ + op.1/, which, together with equations (3.3) and
(A.2) and the decomposition of n−1=2Σn

t=k+1ψτ ."̂t,τ /|"̂t−k,τ | above, yields R= .τ −τ 2/−1=2σ−1
a,τn

−1Σn
t=k+1�t +

op.n−1=2/, where

�t =ψτ ."t,τ /

(
εt−1 −D1Ω−1

2

zt

ht

)
+bτf.bτ /.D2 −D1Ω−1

2 Γ2/J
−1 1−|"t |

ht

@ht.θ0/

@θ
,

with Di = .di1, : : : , diK/′ for i = 1 and i = 2. Applying the central limit theorem and the Cramér–Wold
device, we have

√
nR →d N.0, Σ4/. Furthermore, by a method similar to that for the proof of theorem

8.2 in Francq and Zakoian (2010), we can show that Σ4 is positive definite, and hence theorem 3 follows.
Finally, by methods that are similar to those for the proofs of theorems 2 and 3, we have that RÅ −
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R = .τ − τ 2/−1=2σ−1
a,τn

−1Σn
t=k+1.ωt − 1/�t + oÅ

p .n−1=2/, and then the proof is complete similarly to that for
theorem 2.
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