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a b s t r a c t

This paper proposes the linear double autoregression, a conditional heteroscedastic model
with a conditional mean structure but compatible with the quantile regression. The
existence of a strictly stationary solution is discussed, for which a necessary and sufficient
condition is established. A doubly weighted quantile regression estimation procedure
is introduced, where the first set of weights ensures the asymptotic normality of the
estimator and the second set improves its efficiency through balancing individual quantile
regression estimators across multiple quantile levels. Bayesian information criteria are
proposed for model selection, and two goodness-of-fit tests are constructed to check
the adequacy of the fitted conditional mean and conditional scale structures. Simulation
studies indicate that the proposed inference tools perform well in finite samples, and an
empirical example illustrates the usefulness of the new model.
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1. Introduction

Since the appearance of autoregressive conditional heteroscedastic (ARCH) and the generalized autoregressive condi-
tional heteroscedastic (GARCH) models (Engle, 1982; Bollerslev, 1986), conditional heteroscedastic models have become
extremely popular in volatility and financial risk modeling. In particular, they have been widely used for the prediction of
quantile-based risk measures, e.g., the value at risk. Hence, it is natural to consider the quantile regression (Koenker and
Bassett, 1978) for conditional heteroscedastic models; see, e.g., Engle and Manganelli (2004).

In the literature of quantile regressionmethods for conditional heteroscedasticmodels, for numerical feasibility, it is often
assumed that the conditional standard deviation rather than the conditional variance of the model has a linear structure,
which allows the linear programming (Koenker, 2005) to be used for efficient optimization; see, e.g., the linear ARCHmodel
studied by Koenker and Zhao (1996), the linear GARCHmodel by Xiao and Koenker (2009) and the double-threshold ARCH
model by Jiang et al. (2014). Moreover, this structure can result in more robust inference than the linear structure for the
conditional variance (Xiao and Koenker, 2009). Nevertheless, when there is a conditional mean component, new challenges
will arise. To see this, consider a simple autoregressive (AR) model with linear ARCH errors: yt = φyt−1 + et , et = εtσt ,
σt = β0 + β1|et−1|. The corresponding quantile regression can be defined as

min
θ

n∑
t=1

ρτ (yt − φyt−1 − bβ0 − bβ1|yt−1 − φyt−2|),
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where θ = (b, β0, β1, φ)′, τ ∈ (0, 1) is the quantile level, and ρτ (x) = x{τ − I(x < 0)} is the check function. Because of the
term |yt−1 − φyt−2|, the above objective function is non-convex, causing difficulties for statistical inference and numerical
optimization. This paper proposes a new conditional heteroscedastic model with a conditional mean structure but highly
tractable for the quantile regression. The corresponding inference requires no moment restriction on the observed process
or the innovations, and hence can realize the full potential of the quantile regression from a robustness perspective.

The proposed model is the linear double ARmodel, which adopts the basic form of the double autoregression introduced
by Ling (2007) to make the conditional mean structure especially tractable for quantile inference and, at the same time,
assumes a linear structure for the conditional standard deviation. Recently the double AR model has attracted growing
interest; see Ling and Li (2008), Zhu and Ling (2013) and the references therein. It has the form of

yt =

p∑
i=1

φiyt−i + εt

√β0 +

p∑
j=1

βjy2t−j, (1.1)

where β0 > 0, βj ≥ 0 for 1 ≤ j ≤ p, and {εt} are independent and identically distributed (i.i.d.) innovations with mean
zero and variance one. Model (1.1) has two novel properties. First, it has a larger parameter space than conventional AR
models. For example, model (1.1) with p = 1 may still be stationary even when |φ1| ≥ 1 (Ling, 2004), which is impossible
for AR–ARCHmodels. Second, it usually requires nomoment condition on {yt} for the asymptotic normality of its parameter
estimator (Ling, 2007). In contrast, for the ARMA–GARCHmodel, a finite fourth moment of the observed process is required
for the asymptotic normality of the Gaussian quasi-maximum likelihood estimator (Francq and Zakoian, 2004), resulting in
a much narrower parameter space (Li and Li, 2009). Similar to the double AR model, the proposed linear double AR model
enjoys both novel properties. In particular, we establish a necessary and sufficient stationarity condition by borrowing the
linearity of the random coefficient AR model.

Although the quantile regression is well known for its robustness against heavy tails, its efficiency at certain quantile
levels can be arbitrarily low. The composite quantile regression (CQR) was proposed to improve the efficiency by combining
multiple quantile levels (Koenker, 1984; Zou and Yuan, 2008). As argued in Jiang et al. (2012), by choosing the optimal
weights, the weighted CQR estimator can be nearly as efficient as the maximum likelihood estimator (MLE); see also Jiang
et al. (2014). However, the CQR for the proposed model is time-consuming due to the non-convexity of the objective
function. Zhao and Xiao (2014) suggested using weighted averages of quantile regression estimators at different quantile
levels and their simulation studies showed that the averaging estimator is more efficient than the CQR estimator. Chen et
al. (2016) considered more general weights and the resulting estimator is hence supposed to be even more efficient. On the
other hand, the consistency of the usual quantile regression estimator for the proposedmodel requires the observed process
to have a finite first moment; see Section 3.1. To avoid such moment conditions, Ling (2005) proposed a self-weighted
estimation method for the infinite variance AR model; see also Zhu and Ling (2011). Motivated by Ling (2005) and Chen et
al. (2016),we eliminate anymoment condition on the observed process or the innovations by introducing a doubleweighting
scheme, where the first set of weights guarantees the asymptotic normality, while the second set improves the efficiency
through balancing the information across multiple quantile levels. As a result, the proposed model can handle more heavy-
tailed data, as opposed to existing inference tools for conditional heteroscedastic models which all require the innovations
to have at least a finite second moment. Moreover, the optimal doubly weighted estimator can approach the efficiency of
the MLE under certain conditions.

To select the order of the proposed model in practice, Bayesian information criteria (BIC) are proposed in the quantile
regression context. Furthermore, based on the quantile autocorrelation function (Li et al., 2015) for transformed residuals,
two goodness-of-fit tests are constructed to detect misspecifications in the conditional mean and the conditional scale
separately for the fitted model. Along the lines of robust inference, no further moment condition is required by the
information criteria and goodness-of-fit tests. In this paper, for a matrix or column vector A, we define ∥A∥ =

√
tr(AA′),

where tr(·) denotes the trace of a square matrix. For two matrices A = (Aij) and B = (Bij) with the same dimension, we
define the element-wise product A ◦ B by (A ◦ B)i,j = AijBij, and define A > B if A − B is positive definite.

2. Linear double autoregression

Consider the linear double AR model,

yt =

p∑
i=1

φiyt−i + εt

⎛⎝1 +

p∑
j=1

βj|yt−j|

⎞⎠ , (2.1)

where the integer p is the order, βj ≥ 0 for 1 ≤ j ≤ p, and {εt} is a sequence of i.i.d. innovations. When E(ε2t ) < ∞, by
further assuming that E(εt ) = 0, the innovations can be standardized to have variance one, andmodel (2.1) can be rewritten
as

yt =

p∑
i=1

φiyt−i + ε∗

t

⎛⎝σ +

p∑
j=1

ϱj|yt−j|

⎞⎠ , (2.2)
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Fig. 1. Stationarity regions of model (2.1) of order one. Left: E(|φ1 + β1εt |
κ ) < 1, where κ = 0.1 and εt follows the standard normal (solid line), Student’s

t5 (dashed line) or Student’s t3 (dotted line) distribution. Right: E(ln|φ1 + β1εt |) < 0 (solid line), or E(|φ1 + β1εt |
κ ) < 1 with κ = 0.1 (dashed line) or 0.9

(dotted line), where εt follows the standard Cauchy distribution.

where σ = {E(ε2t )}
1/2, ε∗

t = εt/σ , ϱj = σβj, E(ε∗
t ) = 0 and E(ε∗2

t ) = 1. The linear double AR model in the form of (2.2) is
hence an extension of the double AR model in (1.1) along the lines of the linear GARCH model. We aim to study model (2.1)
without any moment or location restriction on εt .

We first consider the case where εt follows the Cauchy distribution with location zero and scale σ > 0, whose density
function is f (x) = σ/{π (x2 + σ 2)} for x ∈ R. Note that E(|εt |) = ∞ and E(|εt |κ ) < ∞ for any 0 < κ < 1. Let
{ξit , 1 ≤ i ≤ p, t ∈ Z} be a double array of independent random variables which have the same distribution as εt and
are independent of {εt}. Consider the random coefficient AR model,

y∗

t =

p∑
i=1

(φi + βiξit )y∗

t−i + εt , (2.3)

where the φi’s, βi’s and εt are frommodel (2.1). Let Yt = (yt , . . . , yt−p+1)′ and Y ∗
t = (y∗

t , . . . , y
∗

t−p+1)
′, where {yt} and {y∗

t } are
generated by models (2.1) and (2.3), respectively. Noting that the characteristic function of εt is E{exp(isεt )} = exp(−σ |s|),
we can verify that {Yt} and {Y ∗

t } are Markov chains with the same transition probability. This observation enables us to
derive a necessary and sufficient condition for the existence of a strictly stationary solution to model (2.1) by borrowing the
linearity of model (2.3).

Let {At} be a sequence of randommatrices with

At =

(
φ1 + β1ξ1t · · · φp−1 + βp−1ξp−1,t φp + βpξpt

Ip−1 0

)
,

where Im is the m × m identity matrix, and 0 is a zero vector or matrix with compatible dimensions. We define the top
Lyapunov exponent of {At} as

γ = inf
{
1
n
E(ln ∥A1 · · · An∥), n ≥ 1

}
.

It can be shown that E(ln+
∥A1∥) < ∞, where ln+(x) = max{ln(x), 0}. Then, by the subadditive ergodic theorem (Kingman,

1973), γ = limn→∞n−1 ln ∥A1 · · · An∥ with probability one. In particular, γ = E(ln|φ1 + β1ξ1t |) when p = 1.

Theorem 1. If εt follows the Cauchy distribution with location zero and scale σ > 0, then there exists a strictly stationary
solution {yt} to model (2.1) if and only if γ < 0, and this solution is unique and geometrically ergodic with E(|yt |κ ) < ∞ for
some 0 < κ < 1.

For other distributions for εt , it is generally challenging to derive a necessary and sufficient condition for the strict
stationarity, as model (2.1) is actually nonlinear. Alternatively, a sufficient condition is provided below.

Assumption 1. The density function of εt is continuous and positive everywhere onR, and E(|εt |κ ) < ∞ for some 0 < κ ≤ 1.

Theorem 2. Under Assumption 1, if
∑p

i=1 max{E(|φi − βiεt |
κ ), E(|φi + βiεt |

κ )} < 1, then there exists a strictly stationary
solution {yt} to model (2.1), and this solution is unique and geometrically ergodic with E(|yt |κ ) < ∞.

The stationarity region in Theorem 2 depends on the distribution of εt and implies a moment condition on yt . In addition,
when εt has a symmetric distribution, it simplifies to

∑p
i=1E(|φi + βiεt |

κ ) < 1. For illustration, the left panel of Fig. 1 shows
that model (2.1) with order p = 1 can be stationary even if |φ1| ≥ 1, a feature inherited from the double AR model (Ling,
2004), and the right panel of the figure displays the different stationarity regions given by Theorems 1 and 2.
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3. Doubly weighted quantile regression estimation

3.1. Self-weighted quantile regression estimation

Let λ = (β ′, φ′)′ be the parameter vector of model (2.1), where β = (β1, . . . , βp)′ and φ = (φ1, . . . , φp)′. We assume that
the true parameter vector λ0 = (β ′

0, φ
′

0)
′ is in the interior of the parameter spaceΛ, whereΛ is a compact subset ofRp

+ ×Rp

with R+ = (0,∞).
Let Yt = (yt , . . . , yt−p+1)′, Ya,t = (|yt |, . . . , |yt−p+1|)′ and xt = (1, Y ′

a,t−1, Y
′

t−1)
′. Denote the density and distribution

functions of εt by f (·) and F (·), respectively. For any τ ∈ (0, 1), let bτ be the τ th quantile of εt . LetFt be the σ -field generated
by {ys, s ≤ t}. Then the τ th conditional quantile of yt can be written as

Qτ (yt | Ft−1) = bτ + bτY ′

a,t−1β0 + Y ′

t−1φ0, (3.1)

which motivates us to consider the self-weighted quantile regression estimator

(̃bτn, λ̃′

τn) = argmin
b,λ

n∑
t=p+1

wtρτ (yt − b − bY ′

a,t−1β − Y ′

t−1φ), (3.2)

where λ̃τn = (̃β ′
τn, φ̃

′
τn)

′, ρτ (x) = x{τ − I(x < 0)} is the check function and {wt} are random weights; see also Ling (2005).
Numerically, we can first compute the weighted linear quantile regression estimator

θ̃τn = argmin
θ

n∑
t=p+1

wtρτ (yt − x′

tθ ), (3.3)

where θ̃τn = (̃b∗
τn, β̃

∗′
τn, φ̃

∗′
τn)

′. Then it follows that b̃τn = b̃∗
τn, β̃τn = b̃∗−1

τn β̃
∗
τn if b̃∗

τn ̸= 0, and φ̃τn = φ̃∗
τn.

When wt = 1 for all t , the weighted estimator becomes the common quantile regression estimator, and its consistency
requires that E(|εt |) < ∞ and E(|yt |) < ∞, since yt − Qτ (yt | Ft−1) = (εt − bτ )(1 + Y ′

a,t−1β0). If E(y2t ) = ∞, the estimator
will have a slower convergence rate than

√
n and a more complicated asymptotic distribution than the normal distribution;

see Gross and Steiger (1979), An and Chen (1982) and Davis et al. (1992) for the least absolute deviations estimation of
infinite variance AR models.

Let σt = 1 + Y ′

a,t−1β0, and define the matricesΩ0(w) = E(σ−1
t wtxtx′

t ) andΩ1(w) = Ω−1
0 (w)[E(w2

t xtx
′
t )]Ω

−1
0 (w), where

w inΩi(·) indicates dependence on the weights {wt}.

Assumption 2. The sequence of random weights {wt} is strictly stationary and ergodic, and wt is nonnegative and
measurable with respect to Ft−1 for each t . Moreover,Ω0(w) is a positive definite matrix and E(∥wtYt−1∥

2) < ∞.

Assumption 3. The density function f (·) is bounded, positive and uniformly continuous on {x ∈ R : 0 < F (x) < 1}.

The matrix Ω0(w) is degenerate if yt is non-negative (or non-positive) with probability one, and hence its positive
definiteness requires 0 < F (0) < 1. For a fixed τ ∈ (0, 1), restrictions on f (·) in a neighborhood of bτ will be sufficient
to derive asymptotic properties for the self-weighted estimator (Li et al., 2015). In fact, Assumption 3 is imposed mainly for
the discussion in the next subsection.

Lemma 1. Under Assumptions 2 and 3,
√
n(̃θτn − θτ0) → N

{
0, τ (1 − τ )[f (bτ )]−2Ω1(w)

}
in distribution as n → ∞, where

θτ0 = (bτ , bτβ ′

0, φ
′

0)
′.

When bτ = 0, since Qτ (yt | Ft−1) = Y ′

t−1φ0, the parameter vector β0 is not estimable, although φ̃τn is still asymptotically
normal. By Lemma 1 and the Delta method (van der Vaart, 1998, Chapter 3), we have the following theorem.

Theorem 3. Suppose that Assumptions 2 and 3 hold. If bτ ̸= 0, then
√
n(̃λτn − λ0) → N

{
0, τ (1 − τ )Σ−1

1 (τ )Ω2(w)Σ−1
1 (τ )

}
in distribution as n → ∞, where

Σ1(τ ) = f (bτ )
(
bτ Ip 0
0 Ip

)
and Ω2(w) =

(
−β0 Ip 0
0 0 Ip

)
Ω1(w)

(
−β0 Ip 0
0 0 Ip

)′

.

Moreover, the matricesΩ1(w) andΩ2(w) are minimized if wt = σ−1
t for all t .

For the randomweightswt , one feasible choice iswt = 1/(1+
∑p

i=1|yt−i|), which satisfies Assumption 2. However, from
Theorem 3, λ̃τn is asymptotically most efficient when wt = σ−1

t . Thus, in practice, when the sample size is relatively large,
wemay use the weights {σ̃−1

t }with σ̃t = 1+Y ′

a,t−1β̃
int , where β̃ int is an initial estimator with β̃ int

−β0 = Op(n−1/2); e.g., we
may use

β̃ int
=

∑K
k=1 |̃bτkn||̃βτkn|∑K

k=1 |̃bτkn|
=

∑K
k=1 |̃β

∗
τkn|∑K

k=1 |̃bτkn|
, (3.4)
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where b̃τkn and β̃τkn for 1 ≤ k ≤ K are the self-weighted estimators computed based on the initial weights wint
t =

1/(1 +
∑p

i=1|yt−i|) for different quantile levels; see also Zhao and Xiao (2014). Although Assumption 2 does not hold for
{σ̃−1

t }, we can show that theweights {σ−1
t } and {σ̃−1

t }will lead to the same asymptotic distribution of λ̃τn. On the other hand,
when the sample size is relatively small, the weights {wint

t } may be preferable to {σ̃−1
t }; see the simulation experiments in

the supplementary materials. In the rest of the paper, we will use {σ̃−1
t } unless otherwise specified, and Ωi for i = 0, 1, 2

will refer to the matricesΩi(w) with wt = σ−1
t for all t . Note thatΩ1 = Ω−1

0 .
Theorem 3 also implies that, when the value of bτ is near zero, the variance of β̃τn can be so large that β̃τn may even be

negative. This motivates us to consider a doubly weighted quantile regression estimator in what follows.

3.2. Doubly weighted quantile regression estimation

We next introduce a more efficient estimator of λ0 by balancing the information across K quantile levels: τk = k/(K + 1)
for 1 ≤ k ≤ K , where K is a fixed integer.

Specifically, we combine the self-weighted quantile regression estimators {̃λτkn, 1 ≤ k ≤ K } linearly to define the doubly
weighted quantile regression estimator

λ̂n = (̂β ′

n, φ̂
′

n)
′
=

K∑
k=1

πk̃λτkn,

where the πk’s are 2p × 2pweighting matrices with possibly negative entries satisfying
K∑

k=1

πk = I2p; (3.5)

see also Chen et al. (2016). Define the K × K matrix Γ = (Γij)1≤i,j≤K , with Γij = min(τi, τj) − τiτj, and let Γ inv
ij be the (i, j)th

element of Γ −1. Denote

V(Π ) =

K∑
i=1

K∑
j=1

ΓijπiΣ
−1
1 (τi)Ω2Σ

−1
1 (τj)π ′

j ,

whereΠ = (π1, . . . , πK ) is a 2p × 2pK matrix.

Theorem 4. Suppose that Assumptions 2 and 3 hold. If bτk ̸= 0 for 1 ≤ k ≤ K, then
√
n(̂λn −λ0) → N{0,V(Π )} in distribution

as n → ∞. Moreover, denote

π
opt
k =

⎡⎣ K∑
i=1

K∑
j=1

Γ inv
ij Σ1(τi)Ω−1

2 Σ1(τj)

⎤⎦−1 [
K∑

i=1

Γ inv
ik Σ1(τi)Ω−1

2

]
Σ1(τk), 1 ≤ k ≤ K ,

and let Πopt
= (π opt

1 , . . . , π
opt
K ) be a 2p × 2pK weighting matrix. Then we have Πopt

= argminΠV(Π ), and the asymptotic
variance of the optimal doubly weighted quantile regression estimator is V(Πopt ) =

[∑K
i=1

∑K
j=1Γ

inv
ij Σ1(τi)Ω−1

2 Σ1(τj)
]−1
.

For simplicity, denote g(τ ) = f (bτ ) and h(τ ) = bτ f (bτ ). Let gK = (g(τ1), . . . , g(τK ))′ and hK = (h(τ1), . . . , h(τK ))′. Suppose
that f (·) is twice differentiable on {x ∈ R : 0 < F (x) < 1} and its derivative function is ḟ (·). Define the 2 × 2 matrices

IK =

(
IK ,s IK ,ls
IK ,ls IK ,l

)
and I =

(
Is Ils
Ils Il

)
,

where IK ,l = g ′

KΓ
−1gK , IK ,s = h′

KΓ
−1hK , IK ,ls = g ′

KΓ
−1hK , Il =

∫
R[ḟ (u)]2/f (u)du, Is =

∫
R[f (u) + uḟ (u)]2/f (u)du, and

Ils =
∫
R ḟ (u)[f (u) + uḟ (u)]/f (u)du. Under Assumption 3, we have limK→∞IK ,s = Is and limK→∞IK ,l = Il; see Theorems 6.1

and 6.2 in Zhao and Xiao (2014). Similarly, we can show that limK→∞IK ,ls = Ils, and hence

lim
K→∞

V(Πopt ) = lim
K→∞

{[IK ⊗ ιp×p] ◦Ω−1
2 }

−1
= {[I ⊗ ιp×p] ◦Ω−1

2 }
−1,

where ⊗ is the Kronecker product, and ιm×n is an m × n matrix with all elements being one. Denote by (σ̂MLE
n , λ̂MLE′

n ) the
maximum likelihood estimator (MLE) of model (2.2), where the parameter vector is (σ , λ′) and the density of ε∗

t is assumed
to be known. It can be shown that

√
n(̂λMLE

n − λ0) → N(0,VMLE) in distribution as n → ∞, where

VMLE
=

(
−β0 Ip 0
0 0 Ip

)[(
Isι(p+1)×(p+1) Ilsι(p+1)×p
Ilsιp×(p+1) Ilιp×p

)
◦Ω0

]−1(
−β0 Ip 0
0 0 Ip

)′

.

Moreover, limK→∞V(Πopt ) = VMLE under the conditions that E(σ−2
t Yt−1) = 0 and E(σ−2

t Y ′

a,t−1Yt−1) = 0, which is the case
where parameters in the conditional mean and conditional scale can be separately estimated without loss of efficiency. In
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particular, when all φi’s in model (2.1) are zero, these conditions are satisfied as long as the distribution of εt is symmetric
about zero. Otherwise, V(Πopt ) may not be able to attain the Cramér–Rao lower bound. This can probably be solved by using
a nonlinear combination of the estimators, and we leave it for future research.

Theorem 4 requires that bτk ̸= 0 for all 1 ≤ k ≤ K , which is not guaranteed in practice. Let πk = (πk1, πk2), where πk1 and
πk2 are 2p × pmatrices. To make practical the proposed doubly weighted estimator, in addition to (3.5), we further impose
that

πk1 = 0 if bτk = 0, for all 1 ≤ k ≤ K . (3.6)

The optimal weighting matrixΠopt actually satisfies both (3.5) and (3.6), which means that we can conduct the estimation
procedure without worrying whether bτk = 0. But, by a method similar to that of the proof of Theorem 4, it can be shown
that Πopt is no longer optimal under both constraints (3.5) and (3.6), as the matrices π opt

k ’s in general are not diagonal or
even block diagonal. This may be regarded as a necessary consequence of the lack of information about the zeroness of the
quantiles bτk ’s.

To estimate the optimal weighting matrices π opt
k , we can first obtain an estimator of Ω0 using sample averages,

i.e., Ω̃0 = n−1∑n
t=p+1(1 + Y ′

a,t−1β̃
int )−2xtx′

t , where the method in (3.4) can be used to calculate β̃ int , and similarly φ0 can
be approximated by φ̃int

= K−1∑K
k=1φ̃τkn. The estimators of Ω1 and Ω2 can then be constructed, denoted by Ω̃1 and Ω̃2,

respectively. Define the error function

εt (λ) = (yt − Y ′

t−1φ)/(1 + Y ′

a,t−1β), (3.7)

and then the residuals {̃εt} can be calculated by ε̃t = εt (̃λint ) with λ̃int = (̃β int ′ , φ̃int ′ )′. As a result, the density function f (·)
can be estimated by the kernel density estimator f̃ (x) = (nh)−1∑n

t=p+1K {(x − ε̃t )/h}, where K (·) is the kernel function and
h is the bandwidth. By Lemma 1, bτk can be estimated by b̃τkn, and hence an estimator ofΣ1(τk) can be obtained, denoted by
Σ̃1(τk). Consequently, a consistent estimator Π̂opt ofΠopt can be obtained.

Now we are ready to compute the proposed optimal doubly weighted estimator

λ̂optn = (̂βopt′
n , φ̂opt′

n )′ =

K∑
k=1

π̂
opt
k λ̃τkn.

It can be verified that
√
n(̂λoptn − λ0) → N(0,V(Πopt )) in distribution as n → ∞. Accordingly the residuals can be calculated

by ε̂t = εt (̂λ
opt
n ), and an estimator of bτ can be defined as the τ th sample quantile of {̂εt}, i.e., b̂τn = inf{x : F̂n(x) ≥ τ } with

F̂n(x) = (n − p)−1∑n
t=p+1I (̂εt ≤ x). To estimate V(Πopt ), we can update the estimator of λ0 by λ̂

opt
n and the residuals by {̂εt}.

By a method similar to that for calculating Π̂opt , we can obtain a consistent estimator of V(Πopt ), denoted by V̂(Π̂opt ).

3.3. Model selection

This subsection considers the selection of the order p for model (2.1) in practice. We first discuss the case for a certain
quantile level τ ∈ (0, 1). Note that, from (3.1),

yt = bτ + bτY ′

a,t−1β0 + Y ′

t−1φ0 + et , with et = (εt − bτ )σt .

Suppose that {σt} are observable and εt − bτ follows the asymmetric Laplace distribution with location zero, unknown scale
σ > 0 and the density function f (x) = τ (1−τ )σ−1 exp[−ρτ (x/σ )] (Koenker andMachado, 1999). Then, theMLE of (bτ , λ′

0)
′

will have the same formula as the self-weighted quantile regression estimator in (3.2) with wt = σ−1
t . This motivates us to

define the Bayesian information criterion (BIC):

BICτ (p) = 2(n − pmax) log σ̃τn + (2p + 1) log(n − pmax), (3.8)

where p is searched over {1, . . . , pmax}, with pmax being a predetermined number, and σ̃τn = (n−pmax)−1∑n
t=pmax+1wtρτ (yt−

x′
t θ̃τn) is the MLE of the scale σ , with θ̃τn calculated by (3.3) and the weights defined aswt = (σ̃t + c

∑pmax
j=1 |yt−j|)−1 for a very

small but fixed positive number c .
The proposed doubly weighted estimation, however, does not have a corresponding likelihood function since it consists

of multiple quantile regressions. Nevertheless, the BIC in (3.8) yields consistent estimators of the true order p0 for all
τ ∈ (0, 1), and this motivates us to introduce an information criterion by combining the BIC across τ1, . . . , τK . Notice that
the weights πk’s in Section 3.2 arematrices and thus cannot be directly applied to the BIC. In practice, wemay use the simple
average, BIC1(p) = K−1∑K

k=1BICτk (p). In addition, by replacing the self-weighted estimator θ̃τn in (3.8) with the doubly

weighted estimator (̂bτn, b̂τnβ̂
opt′
n , φ̂

opt′
n )′, we can define another BIC, denoted by BIC2(p). Let p̂1n = argmin1≤p≤pmaxBIC1(p)

and p̂2n = argmin1≤p≤pmaxBIC2(p).

Theorem 5. Under Assumption 3, if pmax ≥ p0, then P (̂p1n = p0) → 1 and P (̂p2n = p0) → 1 as n → ∞, where p0 is the true
order.
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In the proposed estimation procedure, the key reason that we need no moment condition on yt is that the condition
E(∥wtYt−1∥

2) < ∞ in Assumption 2 holds true for wt = σ−1
t when the order p is correctly specified. But, since β0j = 0 for

j > p0, this is not the case when p > p0. To ensure that no additional moment condition is required by the proposed BIC, we
add a small number c > 0 to all the β0j’s, leading to the weights defined earlier in this subsection. In practice, the effect of c
is ignorable; see the second simulation experiment in Section 5 for details.

4. Goodness-of-fit tests

To check the adequacy of fitted linear double AR models, we adopt the quantile autocorrelation function (QACF) in Li et
al. (2015) to construct two goodness-of-fit tests to detect misspecifications in the conditional mean and conditional scale
separately.

Tomake the QACF robust to arbitrarily heavy-tailed innovations, we consider the transformed innovations {G(εt )}, where
G : R → R is a predetermined, bounded and strictly increasing function. Noticing that ψτ (εt − bτ ) = ψτ [G(εt ) − G(bτ )],
where ψτ (x) = τ − I(x < 0), the QACF of {G(εt )} at lag ℓ can be defined as

ρℓ,τ = qcorτ {G(εt ),G(εt−ℓ)} =
E{ψτ (εt − bτ )[G(εt−ℓ) − µG,1]}

√
τ − τ 2σG,1

, ℓ = 1, 2, . . . ,

where µG,1 = E[G(εt )] and σ 2
G,1 = var[G(εt )]. By replacing G(εt−ℓ) with G(ε2t−ℓ), a variant of ρℓ,τ can be defined as

rℓ,τ = qcorτ {G(εt ),G(ε
2
t−ℓ)} =

E{ψτ (εt − bτ )[G(ε2t−ℓ) − µG,2]}
√
τ − τ 2σG,2

, ℓ = 1, 2, . . . ,

where µG,2 = E[G(ε2t )] and σ
2
G,2 = var[G(ε2t )]. Notice that if model (2.1) is correctly specified, then ρℓ,τ = 0 and rℓ,τ = 0 for

all ℓ and all τ .
Accordingly the residual QACFs at lag ℓ can be defined as

ρ̂ℓ,τ =
1√

(τ − τ 2)σ̂G,1

1
n − p

n∑
t=p+ℓ+1

ψτ (̂εt − b̂τn){G(̂εt−ℓ) − µ̂G,1}

and

r̂ℓ,τ =
1√

(τ − τ 2)σ̂G,2

1
n − p

n∑
t=p+ℓ+1

ψτ (̂εt − b̂τn){G(̂ε2t−ℓ) − µ̂G,2},

where µ̂G,m = (n − p)−1∑n
t=p+1G(̂ε

m
t ) and σ̂

2
G,m = (n − p)−1∑n

t=p+1{G(̂ε
m
t ) − µ̂G,m}

2 for m = 1 and 2. The two residual
QACFs ρ̂ℓ,τ and r̂ℓ,τ will be used to construct goodness-of-fit tests for the conditional mean and conditional scale structures,
respectively; see Li and Li (2008) for tests based on the conventional sample autocorrelation function.

To combine the information from multiple quantile levels, for any lag ℓ, we can define

ρ̂ℓ = max
1≤k≤K

|̂ρℓ,τk | and r̂ℓ = max
1≤k≤K

|̂rℓ,τk |.

Let ρ̂ = (̂ρ1, . . . , ρ̂L)′ and r̂ = (̂r1, . . . , r̂L)′, where L is a predetermined positive integer.

Assumption 4. G : R → R is a bounded, strictly increasing and twice-differentiable function, with its derivatives of
first and second orders, g and ġ , satisfying that (i) supx∈Rg(x) < ∞; (ii) supx∈Rxg(x) < ∞; (iii) supx∈Rġ(x) < ∞; (iv)
supx∈Rxġ(x) < ∞; and (v) supx∈Rx2ġ(x) < ∞.

For m = 1 and 2, let Gm = (G(εmt−1), . . . ,G(ε
m
t−L))

′,Ω3,m = E[σ−1
t xt (Gm − µG,m1L)′] with 1L being an L × 1 vector of ones,

and Dm(τ ) = (̃d1,m(τ ), . . . , d̃L,m(τ )) with

d̃ℓ,m(τ ) = f (bτ )
(
bτE

{
[G(εmt−ℓ) − µG,m]

Y ′

a,t−1

σt

}
, E

{
[G(εmt−ℓ) − µG,m]

Y ′

t−1

σt

})′

.

In addition, form = 1 and 2 and 1 ≤ i, j ≤ K , let Ψm(τi, τj) be

Γijσ
2
G,mIL − D′

m(τi)Σ3(τj)Ω1Ω3,m −Ω ′

3,mΩ1Σ
′

3(τi)Dm(τj) + D′
m(τi)V(Π

opt )Dm(τj)√
(τi − τ 2i )(τj − τ 2j )σG,m

,

whereΩ1 and Γij are defined in Section 3, IL is the L × L identity matrix, and

Σ3(τ ) =

K∑
k=1

[min(τ , τk) − ττk]π
opt
k Σ−1

1 (τk)
(

−β0 Ip 0
0 0 Ip

)
.



Q. Zhu et al. / Journal of Econometrics 207 (2018) 162–174 169

Table 1
Biases (×10), ESDs (×10) and ASDs (×10) of the doubly weighted estimator λ̂optn when the innovations follow the normal, Student’s t3 or Cauchy
distribution.

n Normal t3 Cauchy

Bias ESD ASD Bias ESD ASD Bias ESD ASD

β 200 −0.203 1.658 1.320 0.204 2.180 1.569 1.674 4.794 2.619
500 −0.063 0.938 0.863 0.123 1.180 1.010 0.803 2.111 1.550

1000 −0.008 0.618 0.619 0.066 0.780 0.716 0.337 1.224 1.074

φ 200 −0.106 1.082 0.889 −0.082 1.115 0.856 −0.081 0.575 0.430
500 −0.057 0.630 0.592 −0.037 0.607 0.563 −0.022 0.272 0.255

1000 −0.021 0.448 0.426 −0.030 0.421 0.403 −0.005 0.173 0.170

Theorem 6. Under Assumption 4 and the conditions of Theorem 4, we have
√
nρ̂ → max1≤k≤K |B1(τk)| and

√
n̂r →

max1≤k≤K |B2(τk)| in distribution as n → ∞, where |x| = (|x1|, . . . , |xL|)′ for x = (x1, . . . , xL)′ ∈ RL, and Bm(τk)with 1 ≤ k ≤ K
are multivariate normal random vectors such that cov(Bm(τi), Bm(τj)) = Ψm(τi, τj), for m ∈ {1, 2}.

We can construct consistent estimators of the covariance matrix Ψm(τi, τj) by a method similar to that for V̂(Π̂opt ) in
Section 3.2. Then, by generating a sequence of, say B = 10,000, multivariate normal random numbers, we can approximate
the asymptotic distributions in Theorem 6 and then obtain confidence bounds for ρ̂ℓ and r̂ℓ.

To check the first L lags jointly, we suggest the Box–Pierce type test statistics Q BP
1 (L) = n

∑L
ℓ=1ρ̂

2
ℓ and Q BP

2 (L) = n
∑L

ℓ=1̂r
2
ℓ ,

which, as n → ∞, converge in distribution to
∑L

ℓ=1max1≤k≤KB2
1,ℓ(τk) and

∑L
ℓ=1max1≤k≤KB2

2,ℓ(τk), respectively, where
Bm(τ ) = (Bm,1(τ ), . . . , Bm,L(τ ))′ for m = 1 and 2.

In practice, we may use the distribution function of the standard Cauchy random variable as the transformation G(·).
Our simulation experiments in the supplementary material indicate that it performs slightly better than several other
transformations in finite samples.

5. Simulation experiments

This section presents three simulation experiments to evaluate the finite-sample performance of the proposed doubly
weighted quantile regression estimator, model selection method and goodness-of-fit tests. In all experiments, we employ
the quantile levels τk = k/10 with k = 1, . . . , 9.

The first experiment aims to examine the finite-sample performance of the doubly weighted quantile regression
estimator λ̂optn , for which the data generating process is

yt = 0.2yt−1 + εt (1 + 0.5|yt−1|),

where {εt} are i.i.d. normal, Student’s t3 or Cauchy random variables with location zero and E(|εt |κ ) = 1 for κ = 0.9.
The sample size is set to n = 200, 500 or 1000, with 1000 replications for each sample size. The self weights {σ−1

t } are
approximated by {1/(1 + β̃ int

|yt−1|)}, where β̃ int is calculated by (3.4). The density function of εt is estimated by the kernel
density method with the Gaussian kernel and its rule-of-thumb bandwidth, h = 0.9n−1/5 min{s, R̂/1.34}, where s and R̂
are the sample standard deviation and interquartile range of the residuals, respectively; see Silverman (1986). Table 1 lists
the biases, empirical standard deviations (ESDs) and asymptotic standard deviations (ASDs) of λ̂optn for different innovation
distributions and sample sizes. As the sample size increases, most of the biases, ESDs and ASDs become smaller, and the
ESDs get closer to the corresponding ASDs. Moreover, when the distribution of εt has heavier tails, all these quantities of
φ̂

opt
n decrease, whereas those of β̂opt

n increase.
In the second experiment, we evaluate the performance of the proposed model selection method in Section 3.3, and the

data generating process is

yt = 0.1yt−1 + 0.3yt−2 + εt (1 + 0.1|yt−1| + 0.3|yt−2|),

where the innovations {εt} are defined as in the previous experiment. The two information criteria, BIC1 and BIC2, in
Section 3.3 are employed with c = 10−5 and pmax = 5. Recall that BIC1 is based on the self-weighted estimators, while
BIC2 is based on the doubly weighted estimator. For i = 1 or 2, the cases of underfitting, correct selection and overfitting by
BICi correspond to p̂i,n being 1, 2 and greater than 2, respectively. Table 2 reports the percentages of underfitted, correctly
selected and overfittedmodels by the two information criteria. It can be seen that both information criteria select the correct
model in most of the replications when the sample size is as small as n = 200, while BIC1 is slightly better. We have also
conducted the experiment for BIC1 with c = 0, and have found that the resulting percentages remain the same as those of
BIC1 in Table 2.

In the third experiment, we study the proposed goodness-of-fit tests, Q BP
1 (L) and Q BP

2 (L). The data are generated from

yt = c1yt−2 + εt (1 + 0.2|yt−1| + c2|yt−2|),

where the innovations {εt} are defined as in the first experiment. We fit a linear double AR model with p = 1 using the
same method as in the first experiment, so that the case of c1 = c2 = 0 corresponds to the size of the tests, the case of
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Table 2
Percentages of underfitted, correctly selected and overfitted models by BIC1 and BIC2 based on 1000 replications.

n Normal t3 Cauchy

Under Exact Over Under Exact Over Under Exact Over

BIC1 200 7.9 91.6 0.5 7.8 92.1 0.1 16.4 83.6 0
500 0 99.7 0.3 0 99.8 0.2 2.5 97.5 0

1000 0 100 0 0 100 0 0.9 99.1 0

BIC2 200 18.8 81.2 0 16.7 83.2 0.1 19.4 80.5 0.1
500 0 99.8 0.2 0 100 0 2.4 97.6 0

1000 0 100 0 0 100 0 0.9 99.1 0

Table 3
Rejection rates of the tests Q BP

1 (6) and Q BP
2 (6) at the 5% significance level when the innovations follow the normal, Student’s t3 or Cauchy distribution.

c1 c2 Normal t3 Cauchy

200 500 1000 200 500 1000 200 500 1000

Q BP
1 0.0 0.0 0.041 0.046 0.052 0.042 0.044 0.050 0.047 0.053 0.051

0.0 0.1 0.042 0.035 0.051 0.049 0.050 0.044 0.055 0.049 0.044
0.0 0.3 0.054 0.048 0.064 0.054 0.050 0.066 0.084 0.081 0.070
0.1 0.0 0.076 0.178 0.386 0.110 0.303 0.586 0.551 0.972 1.000
0.3 0.0 0.639 0.991 1.000 0.822 0.998 1.000 0.993 1.000 1.000

Q BP
2 0.0 0.0 0.044 0.056 0.049 0.048 0.050 0.051 0.056 0.052 0.047

0.0 0.1 0.073 0.107 0.194 0.061 0.117 0.181 0.085 0.123 0.191
0.0 0.3 0.252 0.763 0.997 0.228 0.628 0.961 0.213 0.468 0.765
0.1 0.0 0.044 0.040 0.061 0.039 0.055 0.064 0.210 0.433 0.735
0.3 0.0 0.059 0.075 0.146 0.110 0.191 0.339 0.796 0.998 1.000

c1 ̸= 0 corresponds to misspecifications in the conditional mean, and the case of c2 > 0 corresponds to misspecifications
in the conditional scale. Two departure levels, 0.1 and 0.3, are considered for both c1 and c2, and the standard Cauchy
distribution function is employed as the transformation G(·) for the residual sequence. Table 3 reports the rejection rates
of Q BP

1 (6) and Q BP
2 (6) based on 1000 replications, for sample size n = 200, 500 or 1000. It can be observed that all sizes

are close to the nominal rate when the sample size n is as small as 200, and all powers increase as n or the departure
level increases. Moreover, Q BP

1 (6) performs well in detecting the misspecification in the conditional mean (i.e., c1 ̸= 0
and c2 = 0), especially when the innovation distribution is heavy-tailed, but has little power for the misspecification in
the conditional scale (i.e., c1 = 0 and c2 > 0). In contrast, Q BP

2 (6) performs well in detecting the misspecification in the
conditional scale, especially when the innovation distribution is light-tailed. This indicates that Q BP

1 (L) and Q BP
2 (L) should

be used in conjunction to check the adequacy of the fitted model. In addition, the findings seem consistent with the result
in the first experiment that, as the innovation distribution becomes more heavy-tailed, the estimation performance for the
location-type parameters φ0 tends to improve, whereas that for the scale-type parameters β0 tends to worsen. Furthermore,
the performance of Q BP

2 (6) for the misspecification in the conditional mean seems mixed: it is useless when the innovation
distribution is relatively light-tailed, but is surprisingly powerful for the Cauchy distribution.

6. An empirical example

We illustrate the proposed inference tools using the U.S. monthly interest rates (the effective federal funds rates)
from January 1956 to December 2015. There are 720 observations in total, and we focus on their log returns, denoted
by {yt}.

Based on τk = k/10 for k = 1, . . . , 9 and pmax = 10, the proposed BIC1 and BIC2 both select p = 3. By the doublyweighted
estimation method in Section 3.2, the fitted model is

yt =0.36590.0385yt−1 + 0.09380.0295yt−2 + 0.12340.0320yt−3

+ εt (1 + 27.82935.9681|yt−1| + 6.93313.4008|yt−2| + 14.95574.2480|yt−3|), (6.1)

where the subscripts are the standard errors of the estimated coefficients, and all the estimated coefficients are significant
at the 5% significance level. Fig. 2 gives the Q–Q plots of the residuals from the fitted model against the Student’s t1.5 or t2
distribution. It can be seen that the left tail of the residuals is heavier than t2 yet lighter than t1.5, while the right tail seems
as heavy as t1.5, which suggests that E(ε2t ) = ∞ and E(|εt |) < ∞.

For the fittedmodel in (6.1), the p-values of the goodness-of-fit testQ BP
1 (L) for L = 6, 12 and 18 are all greater than 0.5306,

and those of the test Q BP
2 (L) are all greater than 0.9597. This suggests that the fitted model is adequate. In addition, as shown

in Fig. 3, the residual QACFs ρ̂ℓ and r̂ℓ fall within the corresponding 95% confidence bounds at all the first 15 lags.
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Fig. 2. Q-Q plots of the residuals against the Student’s t1.5 (left panel) or t2 (right panel) distribution.

Fig. 3. Residual QACF plots for ρ̂ℓ (left panel) and r̂ℓ (right panel), where the dashed lines are the corresponding 95% confidence bounds.

For comparison, the fitted double AR model is given by

yt =0.42720.0898yt−1 + 0.07070.0888yt−2 + 0.10690.0714yt−3

+ εt

√
0.00440.0004 + 1.25610.1895y2t−1 + 0.92470.1678y2t−2 + 0.25990.0896y2t−3,

and the fitted AR–ARCH model is

yt = 0.36670.0537yt−1 + 0.10060.0422yt−2 + 0.15610.0393yt−3 + et , et = εt
√
ht ,

ht = 0.00180.0002 + 0.76990.1240e2t−1 + 0.44810.0873e2t−2 + 0.06420.0452e2t−3, (6.2)

where the innovations {εt} are standardized to have mean zero and variance one. The three fitted models have similar
conditional mean structures. In the ARCH component of (6.2), the coefficients of the e2t−j’s add up to 1.2822, suggesting that
E(e2t ) = ∞. This, together with Fig. 2, indicates that the double AR and AR–ARCH models and their inference tools may be
misused here. Moreover, the significance of the conditional mean component implies that a linear ARCH model would not
be suitable.

To examine the forecasting performance, we conduct one-step-ahead predictions using a rolling forecasting procedure.
We start from the forecast origin t = 200 and fit the model using the data from the beginning to the forecast origin
(exclusive). We compute the forecast of the τ th conditional quantile of yt+1, given by µ̂t+1 + σ̂t+1̂bτ , for τ = 1%, 5%, 10%,
90%, 95% and 99%, where µ̂t+1 and σ̂t+1 are the predicted conditional mean and scale, respectively, and b̂τ is the τ th sample
quantile of the residuals. Then we advance the forecast origin by one and repeat the above procedure until all data are
employed.

The forecasting subsample can be divided into three periods: t ∈ [200, 399], t ∈ [400, 599] and t ∈ [600, 719],
corresponding to the periods with moderate, low and high volatilities, respectively. Table 4 reports the empirical coverage
rates (ECRs) of the one-step-ahead predictions by the fitted linear double AR model and the fitted double AR model, for the
three periods and six quantile levels. Among the totally 18 cases, we find that the proposed model outperforms the double
AR model in 10 cases, and is as good as the latter in 5 cases. In contrast, the double AR model is more favorable only at the
three upper quantiles in the high volatility period. This is probably because the conditional scale σ̂t+1 of the double ARmodel
has a quadratic structure, which makes it more sensitive to sudden jumps in the magnitude, resulting in larger and more
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Table 4
Empirical coverage rates (%) for two fittedmodels at different quantile levels.
LDAR: linear double AR model. DAR: double AR model.

1% 5% 10% 90% 95% 99%

t ∈ [200, 399] LDAR 0.5 5.0 8.0 89.5 95.5 98.5
DAR 0.5 5.5 7.5 91.0 96.5 97.5

t ∈ [400, 599] LDAR 1.5 4.0 9.0 96.0 98.0 99.5
DAR 1.5 3.5 8.5 96.5 99.0 99.5

t ∈ [600, 719] LDAR 3.3 10.8 15.0 85.0 90.0 96.7
DAR 3.3 10.8 18.3 85.8 91.7 98.3

accurate ECRs than the proposed model in the high volatility period. Although not reported in the table, all the ECRs for the
fitted AR–ARCH model deviate farther from the corresponding nominal rates than those for the other two models.

7. Conclusion

For conditional heteroscedastic time series models without a conditional mean component, the quantile regression is
often made tractable by assuming a linear structure for the conditional standard deviation. However, when a conditional
mean structure needs to be incorporated, the objective function of the quantile regression is usually no longer convex and
new challenges in the inference and optimization will arise.

This paper proposes the linear double ARmodel which is suitable for quantile inference even when there is a conditional
mean component. It can be regarded as amodification of the double ARmodel along the lines of the linear GARCHmodel, but
enjoys greater tractability for the quantile regression than both models. The proposed doubly weighted estimation achieves
greater efficiency by optimally combining information across the quantiles. Aswith the estimation, the proposed information
criteria and goodness-of-fit tests require nomoment condition on the observed process or the innovations, whereas existing
models and inference tools usually need stronger conditions. The necessity of such robustness is corroborated by the real
data example in Section 6, where it is founded that the innovations may even have an infinite variance.
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Appendix A

This appendix presents an auxiliary lemma, which is crucial to the proof of Theorem 6, and gives the proof sketches of
Theorems 1 and 3–5. Due to the space limit, detailed proofs of all lemmas and theorems are provided in the supplementary
material.

Lemma 2. Under Assumptions 2 and 3, we have the Bahadur representation for b̂τn:

√
n(̂bτn − bτ ) =

1
f (bτ )

⎡⎣ 1
√
n

n∑
t=p+1

ψτ (εt − bτ ) − d′

0(τ )
√
n(̂λoptn − λ0)

⎤⎦ + op(1),

where d0(τ ) = f (bτ )
(
bτE(σ−1

t Y ′

a,t−1), E(σ
−1
t Y ′

t−1)
)′
.

Proof sketch of Theorem1. Denote Yt = (yt , yt−1, . . . , yt−p+1)′. LetBp be the class of Borel sets ofRp and νp be the Lebesgue
measure on (Rp,Bp). By Assumption 1, we can show that {Yt} is a homogeneousMarkov chain on the state space (Rp,Bp, νp),
has a p-step transition kernel that is positive everywhere, and hence is νp-irreducible.

To prove the sufficiency, suppose that γ < 0, i.e., there is an integer s such that E(ln ∥A1 · · · As∥) < 0. Let Ãt =
∏s−1

i=0At−i. By
the continuity of the density f (·) and the dominated convergence theorem, we can show that limu→0q̇(u) = E(ln ∥̃At∥) < 0,
where q̇(u) is the derivative of q(u) = E(∥̃At∥

u), and thus, there is a constant κ ∈ (0, 1) such that E(∥̃At∥
κ ) < q(0) = 1. Using

this result and the test function g(x) = 1+ ∥x∥κ , we can verify Tweedie’s drift criterion (Tweedie, 1983, Theorem 4) for the
s-step Markov chain {Y ∗

ts} and hence that for {Yts}, since {Yt} and {Y ∗
t } have the same transition probability. We can further

show that {Yts} is a νp-irreducible Feller chain, and then by Theorem 4(ii) in Tweedie (1983) and Theorems 1 and 2 in Feigin
and Tweedie (1985), {Yts} is geometrically ergodic with a unique stationary distribution and E(|yt |κ ) < ∞. By Lemma 3.1
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of Tjøstheim (1990), we conclude that {Yt} is geometrically ergodic and is the unique strictly stationary solution to model
(2.1).

To prove the necessity, suppose that there is a strictly stationary solution {yt} to model (2.1). Then we can generate
iteratively a strictly stationary and nonanticipative solution {Y ∗

t : t ∈ N} for model (2.3) by letting Y ∗

0 follow the same
distribution as Yt . As a result, {Y ∗

tp : t ∈ N} is a nonanticipative and strictly stationary solution to Y ∗
tp = ÃtpY ∗

(t−1)p + Btp,
where Ãt =

∏p−1
i=0 At−i and Btp = etp +

∑p−1
j=1

∏j−1
r=0Atp−retp−j with et = (εt , 0, . . . , 0)′. Moreover, it can be shown that

E(ln+
∥̃Atp∥) < ∞, E(ln+

∥Btp∥) < ∞, and {Y ∗
tp : t ∈ N} is irreducible. Finally, by Theorem 2.5 of Bougerol and Picard (1992),

the top Lyapunov exponent γ̃ = inf{t−1E(ln ∥̃Ap̃A2p · · · Ãtp∥), t ≥ 1} is strictly negative, and it follows that γ ≤ γ̃ /p < 0. □

Proof sketch of Theorem 3. The asymptotic normality of
√
n(̃λτn −λ0) in Theorem 3 follows directly from Lemma 1 and the

Delta method (van der Vaart, 1998, Chapter 3). To find the minimum ofΩ1(w), as in Xu (2017), we consider the regression
model, zt = σ−1

t x′
tγ + et , where {et} are i.i.d. standard normal, independent of {xt}, and γ is the unknown parameter to

be estimated. The weighted least-squares estimator γ̂ (λ) = argminr
∑n

t=1λt
(
zt − σ−1

t x′
t r

)2
with the weights λt = σtwt is

asymptotically normal with mean zero and varianceΩ1(w). On the other hand, by the normality of et , the estimator is most
efficient when λt ≡ 1. Thus,Ω1(w) is minimized at wt = σ−1

t , and so isΩ2(w). □

Proof sketch of Theorem 4. By Lemma 1 and the Delta method, we have the Bahadur representation
√
n(̃λτn − λ0) =

Σ2(τ )Ω−1
0 n−1/2∑n

t=p+1ψτ (εt − bτ )σ−1
t xt + op(1), whereΩ−1

0 = Ω1 since wt = σ−1
t . It then follows from the central limit

theorem that
√
n(̂λn − λ0) → N(0,V(Π )) in distribution as n → ∞. Consider a minimum distance estimator

λ̂∗

n = argmin
λ

{̃λn − (1K ⊗ I2p)λ}′Ξ {̃λn − (1K ⊗ I2p)λ},

where Ξ is a 2pK × 2pK matrix and λ̃n = (̃λ′
τ1n, . . . , λ̃

′
τK n)

′. It can be verified that λ̂∗
n = Π λ̃n =

∑K
k=1πk̃λτkn, where

Π = (π1, . . . , πK ) = {(1K ⊗ I2p)′Ξ (1K ⊗ I2p)}−1(1K ⊗ I2p)′Ξ . As argued in Chen et al. (2016), the asymptotic variance of λ̂∗
n is

minimized whenΞ is proportional to the inverse of the asymptotic variance of
√
n[̃λn − (1K ⊗ I2p)λ0]. Thus, we can obtain

Πopt that corresponds to such a matrixΞ and the results of the theorem. □

Proof sketch of Theorem 5. By β̃ int
− β0 = Op(n−1/2), σ̃t = 1 + Y ′

a,t−1β̃
int and wt = (σ̃t + c

∑pmax
j=1 |yt−j|)−1, it suffices to

prove the theorem for the weightswt = (σt + c
∑pmax

j=1 |yt−j|)−1
= [1+

∑pmax
j=1 (c+β0j)|yt−j|]

−1, for which Assumption 2 holds
since c + β0j > 0 for 1 ≤ j ≤ pmax. By a standard argument, we can accomplish the proof. □

Appendix B. Supplementary data

The supplementarymaterial contains additional simulation experiments and detailed proofs of all lemmas and theorems
in the paper. Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.
05.006.
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