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Summary. The paper novelly transforms lack-of-fit tests for parametric quantile regression
models into checking the equality of two conditional distributions of covariates. Accordingly, by
applying some successful two-sample test statistics in the literature, two tests are constructed
to check the lack of fit for low and high dimensional quantile regression models.The low dimen-
sional test works well when the number of covariates is moderate, whereas the high dimensional
test can maintain the power when the number of covariates exceeds the sample size. The null
distribution of the high dimensional test has an explicit form, and the p-values or critical values
can then be calculated directly.The finite sample performance of the tests proposed is examined
by simulation studies, and their usefulness is further illustrated by two real examples.
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1. Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression has become an
effective alternative to mean regression in many fields such as finance, economics and geology.
See Koenker (2005) for a literature review. For a response Y and covariates X, instead of the
conditional mean E.Y |X/ in mean regression, quantile regression aims at the τ th quantile of Y
conditionally on X:

Qτ .Y |X/=mτ .X/,

where 0 < τ < 1, and random vector X consists of p covariates with a fixed p. The function
mτ .·/ is unknown, and it is flexible to use a non-parametric approach to fit it. However, this
method usually has a poor performance even when p is moderate, and it is also well known to
lack interpretation (Koenker, 2005; Fan and Gijbels, 1996). The parametric method, therefore,
is still routinely used in quantile regression as well as in other scenarios, and specifically a
parametric form will be assumed for the function of mτ .·/, i.e. mτ .X/=mτ .X, β/ is known up to
a parameter vector β. Accordingly, it is an important task in the literature to perform a lack-of-fit
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test to check whether the parametric form is misspecified. Zheng (1998) first considered a kernel-
based test for a general parametric quantile regression model. He and Zhu (2003) extended the
approach in Stute (1997) and proposed a test based on a weighted cumulative sum process of the
residuals. See also Horowitz and Spokoiny (2002), Whang (2006), Otsu (2008), Escanciano and
Velasco (2010) and Escanciano and Goh (2014) for more lack-of-fit tests based on cumulative
sum processes. These tests are all non-parametric, and they can detect the departures at all
directions when the sample size tends to ∞. As a cost, the number of covariates p is limited to a
small value, say 1 or 2, in real applications. Conde-Amboage et al. (2015) suggested projecting
the covariates X into a random variable first, and then applying He and Zhu’s (2003) method
to form a lack-of-fit test. It works well for a larger p<n.

Denote by β0 the true parameter vector, and let " = Y − mτ .X, β0/. It then holds that
P{Qτ .Y |X/=mτ .X, β0/}=1 if and only if

E{I."< 0/|X}= τ with probability 1, .1/

where I.·/ is the indicator function. The aforementioned lack-of-fit tests are all based on con-
dition (1), wheras they do not pay attention to, or do not need, another condition that the
random variable I."< 0/ takes only two possible values. Consider the distribution functions of
X conditionally on I." < 0/ and I." > 0/. We can show that equation (1) holds if and only if
these two conditional distributions are equal (see lemma 1 in Section 2 for details). This makes
it possible to check whether the parametric form mτ .X, β/ is correctly specified via solving a
two-sample problem. For example, it will lead to He and Zhu’s (2003) lack-of-fit test if the
Cramér–von Mises test is applied to check the equality of the two conditional distributions of
X (see Section 2 for details). There is a rich literature of two-sample tests, and we can always
find a suitable test statistic in this literature to form the corresponding lack-of-fit test according
to our experiences in covariates. To demonstrate the idea here, we first consider the two-sample
test statistic in Baringhaus and Franz (2004), which has a sound power even for the case with a
moderate dimension, in Section 3.

Quantile regression has recently attracted more attention in the literature of high dimensional
data; where the number of covariates p may greatly exceed that of observations, the linear model
is usually assumed, i.e.

Qτ .Y |X/=mτ .X, β/=XÅTβ XÅ = .1, XT/T, .2/

and almost all studies in this area concentrate on the variable selection. See He et al. (2013),
Belloni and Chernozhukov (2011), Zheng et al. (2015), Ma et al. (2017) and references therein.
Shah and Bühlmann (2018) first introduced the concept of lack of fit, or goodness of fit, for
high dimensional linear mean models, which can be adopted for quantile regression models.
When the number of covariates p is larger than that of observations, it usually reaches the exact
fit of the data, leaving no room for a discussion of lack of fit. However, the situation is different
if model (2) is a sparse model. For a certain data-generating process, if there is no good sparse
approximation of XÅTβ to mτ .X, β/, a sparse non-linear model may be more suitable than a
sparse linear model. The lack of fit in this paper also refers to the case where some important
covariates have been missed in the process of searching for the good sparse approximation of
XÅTβ. To construct a lack-of-fit test for the high dimensional linear quantile regression model
(2), although we may first consider the residual prediction method in Shah and Bühlmann
(2018), it heavily depends on ordinary least squares estimation and cannot be extended to the
quantile regression model. By taking advantage of the relationship between lack-of-fit tests and
two-sample problems, Section 4 constructs a test by applying two high dimensional two-sample
test statistics in Cai et al. (2013, 2014). More importantly, the asymptotic distribution of the test
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statistic under the null hypothesis has an explicit form, and we can calculate the critical values
or p-values directly.

The proofs of all lemmas and theorems are given in the separate on-line supplementary file,
and all data sets and codes that are used in the paper can be downloaded from https://
github.com/DurandalK/qrLOFT and are available also from

https://rss.onlinelibrary.wiley.com/hub/journal/14679867/series-
b-datasets

2. Relationship between lack-of-fit tests and two-sample problems

Suppose that the τ th quantile of Y conditionally on X has a parametric form of

Qτ .Y |X/=mτ .X, β/, .3/

where mτ .·, ·/ is a known function, X = .X1, : : : , Xp/T consists of p covariates and β is the
parameter vector. Denote by β0 the true parameter vector. Let "=Y −mτ .X, β0/, and g.X/=
E{I."<0/|X}. To check whether the parametric form of model (3) is correctly specified, we can
summarize the hypothesis below,

H0 : P{g.X/= τ}=1 versus H1 : P{g.X/= τ}< 1:

Denote the observed data by {.Yi, XT
i /T, i=1, : : : , n}, which are independent and identically

distributed random vectors, where Xi = .X1i, : : : , Xpi/
T, and n is the number of observations.

Denote S = {1 � i � n : "i < 0} and Sc = {1 � i � n : "i � 0}, where "i = Yi − mτ .Xi, β0/. We
then can separate the observed covariates {Xi, 1 � i � n} into two samples, {Xi, i ∈ S} and
{Xi, i∈Sc}, and they have the distributions FS.x/=P.X <x|"<0/ and FSc .x/=P.X <x|" � 0/

respectively.

Lemma 1. It holds that

FS.x/−FSc .x/= 1
τ .1− τ /

∫ x

−∞
{g.s/− τ}dFX.s/,

where FX.·/ is the distribution function of Xi.

It is implied by lemma 1 that P{g.Xi/ = τ}= 1 if and only if FS.·/ = FSc .·/. As a result, to
check whether model (3) is correctly specified, we can equivalently test the hypothesis

H0 : FS.·/=FSc .·/ versus H1 : FS.·/ �=FSc .·/: .4/

The true parameter vector β0 is unknown, but we may estimate it by

β̂n =arg min
n∑

i=1
ρτ{Yi −mτ .Xi, β/},

where ρτ .u/=u{τ −I.u<0/} (Koenker, 2005). Let "̂i =Yi −mτ .Xi, β̂n/, Ŝ ={1 � i � n : "̂i <0},
and Ŝc = {1 � i � n : "̂i � 0}. We next consider the Cramér–von Mises test (Anderson, 1962)
to check the equality of the distributions of samples {Xi, i∈ Ŝ} and {Xi, i∈ Ŝc}.

Let κn =Σi∈S1 and κ̂n =Σ
i∈Ŝ1 be the number of elements in the sets S and Ŝ respectively.

When the function mτ .·, ·/ in model (3) has a linear form, it holds that κn =nτ +op.n/ and κ̂n =
nτ +op.n/. See theorem 2.2 of Koenker (2005) for details. The weighted empirical distributions
of FS.·/ and FSc .·/ then have the forms of

F̂ Ŝ.x/= 1
nτ

∑
i∈Ŝ

ω.Xi/I.Xi �x/
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and

F̂ Ŝc .x/= 1
n.1− τ /

∑
i∈Ŝc

ω.Xi/I.Xi �x/

respectively, where ω.·/ is the weight function. Let ψτ .u/= τ − I.u< 0/, and we can verify that

F̂ Ŝ.x/− F̂ Ŝc .x/= 1
nτ

n∑
i=1

ω.Xi/I.Xi �x/I{Yi −mτ .Xi, β̂n/< 0}

− 1
n.1− τ /

n∑
i=1

ω.Xi/I.Xi �x/I{Yi −mτ .Xi, β̂n/�0}

=− 1
τ .1− τ /

√
n

Rn.x/,

where

Rn.x/= 1√
n

n∑
i=1

ω.Xi/I.Xi �x/ψτ{Yi −mτ .Xi, β̂n/}

is just the weighted cumulative sum process of residuals in He and Zhu (2003), and their lack-
of-fit test statistic is defined as the largest eigenvalue of n−1Σn

i=1Rn.Xi/R
T
n .Xi/. Therefore, we

obtain He and Zhu’s (2003) test statistic.
For the two-sample problem (4), there are a huge number of tests for the equality of two

distributions in the literature, and we can always find a suitable test according to our experiences
in covariates Xi. For example, we may consider the Kolmogorov–Smirnov test. However, these
non-parametric tests, and hence the resulting lack-of-fit tests, work well only for the case with
a small number of covariates p, say 1 or 2, in real applications.

The idea here is first demonstrated in the next section to form a practical lack-of-fit test for
low dimensional data, and it is used again in Section 4 for high dimensional data. For simplicity,
we focus on a linear form of mτ .·, ·/, i.e.

Qτ .Yi|Xi/=mτ .Xi, β/=XÅT
i β, .5/

where XÅ
i = .1, XT

i /T, β is the .p+1/-dimensional vector and β0 is its true value. All results in
this paper can be readily extended to other parametric forms.

3. Lack-of-fit test for low dimensional data

3.1. Test statistic
Consider two samples {Ui} and {Vi} with distribution functions FU.·/ and FV.·/ respectively.
It holds that

E.‖U1 −V1‖/−0:5E.‖U1 −U2‖/−0:5E.‖V1 −V2‖/�0, .6/

where ‘‖ ·‖’ is the Euclidean norm, and the equality holds if and only if FU.·/=FV.·/. This leads
to a test statistic for the equality of FU.·/ and FV.·/ in Baringhaus and Franz (2004), which has a
reasonable power even for a moderate dimension of random vectors Ui and Vi. See also Székely
and Rizzo (2005) for testing multivariate normality.

By applying Baringhaus and Franz’s (2004) test to hypotheses (4), we have the test statistic

T1n = 1
n2τ .1− τ /

∑
i∈S,j∈Sc

‖Xi −Xj‖− 0:5
n2τ2

∑
i,j∈S

‖Xi −Xj‖− 0:5
n2.1− τ /2

∑
i,j∈Sc

‖Xi −Xj‖, .7/
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where "i =Yi −XÅT
i β0, and S and Sc are defined as in the previous section.

Denote the unit sphere in Rp by Sp−1 ={b∈Rp :‖b‖=1}, and let F̂S,b.·/, F̂Sc,b.·/ and F̂ b.·/
be the empirical distributions of {XT

i b, i∈S}, {XT
i b, i∈Sc} and {XT

i b, 1 � i � n} respectively.
We then can verify that

T1n =γp

∫
Sp−1

∫ ∞

−∞
{F̂S,b.x/− F̂Sc,b.x/}2dx dμ.b/+op.n−1/,

where μ is the uniform distribution on Sp−1 and γp is a constant depending on p only, and it
actually is a Cramér-type statistic. It is of interest to define its Cramér-von Mises version:∫

Sp−1

∫ ∞

−∞
{F̂S,b.x/− F̂Sc,b.x/}2dF̂ b.x/dμ.b/,

which is equivalent to the test statistic in Conde-Amboage et al. (2015). This paper will focus on
the Cramér-type statistic T1n since the Cramér test is usually more powerful than the Cramér–
von Mises test (Baringhaus and Franz, 2004), and it is also easier to calculate the value of
T1n.

To estimate the parameter vector, we may consider

β̂n =arg min
n∑

i=1
ρτ .Yi −XÅT

i β/:

Let "̂i =Yi −XÅT
i β̂n, and Ŝ and Ŝc are defined as in the previous section. Together with equation

(7), we can define the lack-of-fit test statistic as

T̂ 1n = 1
n2τ .1− τ /

∑
i∈Ŝ, j∈Ŝc

‖Xi −Xj‖− 0:5
n2τ2

∑
i,j∈Ŝ

‖Xi −Xj‖− 0:5
n2.1− τ /2

∑
i,j∈Ŝc

‖Xi −Xj‖,

where S and Sc in T1n are replaced by Ŝ and Ŝc respectively.

3.2. Asymptotic results
Denote by f"|X.·/ the conditional density function of " given the covariate X. LetΣ0 =E.XÅXÅT/,
Σ1 =E{f"|X.0/XÅXÅT} and

cτ = 1
2τ .1− τ /

E[‖X1 −X2‖{f"1|X1.0/XÅT
1 Σ−1

1 XÅ
1 +f"2|X2.0/XÅT

2 Σ−1
1 XÅ

2 }]:

Theorem 1. Suppose that assumptions 1 and 2 in Appendix A hold. If the quantile regression
model (5) is correctly specified, then nT̂ 1n →d cτ +	1, where 	1 =3Σ∞

j=1λj.χ2
1j −1/, {λi} are

eigenvalues that are associated with the kernel κ0, which is defined as in equation (11) in
Appendix A, and {χ2

1j} are independent χ2 random variables with 1 degree of freedom.

For model (5), since the measurement units of covariates may vary in different scenarios, it
is common in real applications to standardize some or even all covariates before performing
the corresponding estimation, whereas the fitted conditional quantiles Q̂τ .Yi|Xi/ are invariant.
However, it may result in a different value of T̂ 1n, although the partition of Ŝ and Ŝc is still
unchanged, i.e. the proposed test T̂ 1n may be dominated by some covariates, which have much
larger variances than the others. As a result, we may standardize all covariates first, i.e. the
test is performed on the scaled covariates, {.Xki − μ̂k/=σ̂

1=2
kk , i= 1, : : : , n} for 1 � k � p, where

μ̂k =n−1Σn
i=1Xki and σ̂kk =n−1Σn

i=1.Xki − μ̂k/2. Note that μ̂ks and σ̂kks are all consistent and,
by a method similar to the proof of theorem 1, we can readily derive the asymptotic distribution
of the resulting test statistic under the null hypothesis.
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To evaluate the asymptotic power of T̂ 1n, we consider the local alternatives

Qτ .Yi|Xi/=XÅT
i β+n−1=2h.Xi/, .8/

where h.·/ is a non-linear function satisfying minb supX{h.X/−XTb}2 >0 (He and Zhu, 2003).
Let cβ =Σ−1

1 E{f"|X.0/XÅh.X/}. We then can obtain the Bahadur representation under the
above local alternatives,

√
n.β̂n −β0/=Σ−1

1 n−1=2
n∑

i=1
ψτ ."i/XÅ

i + cβ +op.1/,

whereas it has the form
√

n.β̂n −β0/=Σ−1
1 n−1=2

n∑
i=1

ψτ ."i/XÅ
i +op.1/

under the null hypothesis (5).

Theorem 2. Under the local alternatives (8), if assumptions 1 and 2 in Appendix A hold,
then nT̂ 1n →d cτ +	1 +	2, where 	2 is a Gaussian random variable with mean 0 and variance
{τ .1− τ /}−3E[E.‖X1 −X2‖|X1/f"1|X1.0/{XÅT

1 cβ −h.X1/}]2, and cτ and 	1 are defined as in
theorem 1.

Theorem 2 shows that the test T̂ 1n has non-trivial power under the local alternatives (8).

3.3. Bootstrapping approximation
The asymptotic distribution in theorem 1 has a complicated form since it is usually difficult to
derive those eigenvalues {λi}. By adopting the wild bootstrap method in Feng et al. (2011), we
suggest the following procedure to approximate this distribution.

Step 1: generate independent and identically distributed random weights {wi} with the
distribution function satisfying assumption 3 in Appendix A.
Step 2: generate the bootstrapped sample {YÅ

i } with YÅ
i =XÅT

i β̂n +wi|"̂i|, and calculate the
bootstrapped estimator by

β̂
Å
n =arg min

n∑
i=1

ρτ .Y
Å
i −XÅT

i β/:

Step 3: let "̂Å
i = YÅ

i − .1, XT
i /β̂

Å
n , ŜÅ = {1 � i � n : "̂Å

i < 0} and ŜÅc = {1 � i � n : "̂Å
i � 0}.

Calculate the statistic T̂
Å
1n.1/ by replacing Ŝ and Ŝc in the test statistic T̂ 1n with ŜÅ

and ŜÅc

respectively.
Step 4: repeat steps 1–3 B−1 times. We then can use the empirical distribution of{T̂

Å
1n.1/, : : : ,

T̂
Å
1n.B/} to approximate the distribution of test statistic T̂ 1n.

Theorem 3. Suppose that the conditions in theorem 1 hold. If assumption 3 in Appendix A
is further satisfied, then

sup
x∈R

|PÅ.nT̂
Å
n �x/−P.nT̂ n �x/|→0

holds in probability as n→∞, where PÅ is the probability measure in the bootstrapped space.

Theorem 3 makes sure that the procedure proposed can be used to calculate critical values or
p-values. For the random weights {wi}, although there are many distribution functions satisfying
assumption 3, they may lead to a similar result (Feng et al., 2011).
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4. Lack-of-fit test for high dimensional data

4.1. Test statistic
Consider the high dimensional linear quantile regression model (5) with the number of covariates
p being larger than the sample size n. A sparse structure is hence assumed, and this section applies
the finding in Section 2 to construct a lack-of-fit test to check whether there is a good sparse
approximation of XÅTβ to Qτ .Y |X/=mτ .X, β/ and/or whether some important covariates are
missed by XÅTβ.

We first consider an l1-penalized quantile regression estimator for model (5):

β̃n =arg min
n∑

i=1
ρτ .Yi −XÅT

i β/+λτ .1− τ /
p∑

j=1
σ̃j|βj|,

where σ̃j =n−1Σn
k=1X2

jk (Belloni and Chernozhukov, 2011). Let D ={1 � j � p :β0j �= 0} and
D̂ = {1 � j � p : β̃jn �= 0} be the set of truly active covariates and its estimated version respec-
tively, where β0 = .β00,β01, : : : ,β0p/T is the true parameter vector, and β̃n = .β̃0n, β̃1n, : : : , β̃pn/T.
Denote by q=Σj∈D1 and q̂=Σ

j∈D̂1 the cardinalities of D and D̂ respectively. Without loss of
generality, we rearrange the p covariates such that D̂ = {0, 1, : : : , q̂}. The probability structure
of β̃n will be involved in constructing the test statistic, but it is well known to be biased. We
further assume that X is independent of "=Y −XÅTβ0 and then consider a debiased estimator,

β̂n = β̃n +n−1f̂
−1

.0/Ω̂
q

0

n∑
k=1

XÅ
k ψτ ."̃k/,

where f̂ .·/ is an estimated density function of ", Ω̂
q

0 is a fitted precision matrix with the last p− q̂

rows replaced by 0s, and "̃k =Yk −XÅT
k β̃n (Bradic and Kolar, 2017). Note that β̂jn = β̃jn =0 for

q̂+1 � j � p, where β̂n = .β̂0n, β̂1n, : : : , β̂pn/T.
We next consider a test statistic to check whether the distributions of two samples {Xi, i∈ Ŝ}

and {Xi, i ∈ Ŝc} are equal, where "̂i = Yi − XÅT
i β̂n, and Ŝ and Ŝc are defined as in Section 2.

This is a high dimensional two-sample problem and, in the literature, the equality of moments,
rather than distribution functions, has been checked. See Bai and Saranadasa (1996), Schott
(2007), Chen and Qin (2010), Srivastava and Yanagihara (2010) and Li and Chen (2012) and
references therein.

Cai et al. (2014) and Cai et al. (2013) proposed two-sample tests for the equality of the means
and variances respectively, and they are especially designed for the case with a sparse structure.
Let X= .XT

D, XT
Dc /

T, where XD and XDc consist of active and inactive covariates respectively. We
can verify that the distributions of XDc conditionally on I."<0/ and I." � 0/ are equal regardless
of whether under the null or alternative hypothesis. Thus, for model (5) with a sparse structure,
the corresponding two-sample problem also has a sparse structure. This section, therefore, uses
the test statistics in Cai et al. (2014) and Cai et al. (2013) to check for the equality of the means
and variances of samples {Xi, i∈ Ŝ} and {Xi, i∈ Ŝc} respectively.

We first adopt the method in Cai et al. (2013) to check the equality of variances matrices.
Denote the sample means by

μ̂Ŝ = 1
nτ

∑
k∈Ŝ

Xk

and

μ̂Ŝc = 1
n.1− τ /

∑
k∈Ŝc

Xk,
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and the sample variances by

Σ̂Ŝ = 1
nτ

∑
k∈Ŝ

.Xk − μ̂Ŝ/.Xk − μ̂Ŝ/T

and

Σ̂Ŝc = 1
n.1− τ /

∑
k∈Ŝc

.Xk − μ̂Ŝc /.Xk − μ̂Ŝc /
T:

Let

γ̂ij.Ŝ/= 1
nτ

∑
k∈Ŝ

[{Xik − μ̂i.Ŝ/}{Xjk − μ̂j.Ŝ/}− σ̂ij.Ŝ/]2

and

γ̂ij.Ŝc/= 1
n.1− τ /

∑
k∈Ŝc

[{Xik − μ̂i.Ŝc/}{Xjk − μ̂i.Ŝc/}− σ̂ij.Ŝc/]2,

where μ̂Ŝ = .μ̂1.Ŝ/, : : : , μ̂p.Ŝ//T, μ̂Ŝc = .μ̂1.Ŝc/, : : : , μ̂p.Ŝc//T, Σ̂Ŝ = .σ̂ij.Ŝ//p×p and Σ̂Ŝc =
.σ̂ij.Ŝc//p×p. The test statistic is given by

M̂Σ = max
1�i�j�p

{σ̂ij.Ŝ/− σ̂ij.Ŝc/}2

.nτ /−1γ̂ij.Ŝ/+{n.1− τ /}−1γ̂ij.Ŝc/
:

The method in Cai et al. (2014) is then applied to check the equality of the means whereas
the variance matrices are assumed to be equal. Denote the pooled sample covariance matrix
by Σ̂= τΣ̂Ŝ + .1− τ /Σ̂Ŝc , and we can calculate its adaptive thresholding estimator by Σ̂ATE =
.σ̂ijI[|σ̂ij| � δ

√{λij log.p/=n}]/p×p, where

λij = 1
n

∑
k∈Ŝc

[{Xik − μ̂i.Ŝc/}{Xjk − μ̂i.Ŝc/}− σ̂ij]2 + 1
n

∑
k∈Ŝ

[{Xik − μ̂i.Ŝ/}{Xjk − μ̂j.Ŝ/}− σ̂ij]2,

Σ̂= .σ̂ij/p×p and δ is a tuning parameter which can be set to δ= 2 or can be selected through
cross-validation empirically. Consequently, the precision matrix can be estimated by Ω̂= Σ̂

−1
ATE,

and the test statistic is

M̂μ = κn.n−κn/

n
max

1�i�p

D̂
2
i

b̂ii

, .9/

where .D̂1, : : : , D̂p/T = Ω̂.μ̂Ŝ − μ̂Ŝc /, and b̂ii is the ith diagonal element of the matrix Ω̂Σ̂Ω̂.
By combining M̂μ and M̂Σ, we can define the lack-of-fit test statistic:

T̂ 2n =max[M̂μ −2 log.p/+ log{log.p/}, M̂Σ −4 log.p/+ log{log.p/}]:

4.2. Asymptotic results

Theorem 4. Suppose that assumptions 1 and 4–8 in the Appendix A hold. If q3 log5.p∨n/=
o.n/, then

P.T̂ 2n �u/→ exp[−{π−1=2 + .8π/−1=2} exp.−u=2/], .10/
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as min.n, p/→∞ under the null hypothesis that model (5) is correctly specified.

From the technical proof of theorem 4, we have that
√

n.μ̂Ŝ − μ̂Ŝc / = √
n.μ̂S − μ̂Sc / −

Ψ1
√

n.β̂n − β0/ + op.1/ and
√

n{vec.Σ̂Ŝ/ − vec.Σ̂Ŝc /} = √
n{vec.Σ̂S/ − vec.Σ̂Sc /} −

Ψ2
√

n.β̂n −β0/+op.1/, where Ψ1 =f.0/E.XkXÅT
k / and Ψ2 =f.0/E{.Xk ⊗Xk/XÅT

k }, and the
partitions of S and Ŝ are based on the true parameter vector β0 and the estimator β̂n respec-
tively. These two equations still hold when β̂n is replaced by β̃n. Under some local alternatives,
we may expect that

√
n.β̂n − β0/ or

√
n.β̃n − β0/ has a deterministic shift cβ as in the low

dimensional case in the previous section. From Cai et al. (2013, 2014), the test statistic T̂ 2n will
have the power when cβ =O[

√{log.p/=n}]. However, it may be difficult to derive the asymptotic
behaviour of β̂n or β̃n under the alternative hypothesis, and we leave it for future research.

In addition, let μS =E.X|"< 0/, ΣS =var.X|"< 0/, μSc =E.X|" � 0/ and ΣSc =var.X|" �
0/. The proposed test T̂ 2n is to check whether μS =μSc and ΣS =ΣSc rather than to check
whether FS.·/ = FSc .·/ as in the previous two sections. As a result, the proposed test statistic
T̂ 2n may have a lower power for some situations, and this may be the necessary cost when the
number of covariates p is much larger.

When all covariates X are discretely distributed, i.e. the distribution function has a finite
number of parameters, we may figure out a more powerful lack-of-fit test by checking the
equality of conditional distribution functions rather than their first two moments.

5. Simulation studies

This section conducts two simulation experiments to assess the finite sample performance of the
proposed tests, T̂ 1n and T̂ 2n, for the cases with Gaussian and heavy-tailed covariates respectively.
For comparison, we also conduct another two tests: the test in Conde-Amboage et al. (2015),
hence denoted by CSG, and an oracle test, which refers to T̂ 2n with the sparsity structure being
known in advance.

For the test statistic T̂ 1n, from the Bahadur representation of β̂n in Section 3, if "i is further
assumed to be independent of Xi, we have

"̂i = "i −f.0/−1XÅT
i

(
n∑

j=1
XÅ

j XÅT
j

)−1

XÅ
i ψτ ."i/+op.n−1=2/,

where f.·/ :=f"|X.·/ is the density function of "i. As in Feng et al. (2011), we use the corrected
residuals "̂i + f̂ .0/−1XÅT

i .Σn
j=1XÅ

j XÅT
j /−1XÅ

i ψτ ."̂i/ in the bootstrapping procedure, where "̂i =
Yi −XÅT

i β̂n, and f̂ .·/ can be estimated from the residuals {"̂i} by the kernel method in Portnoy
and Koenker (1989). In addition, the following two-point mass distribution is employed for the
random weights {wi}:

wi =
{

2.1− τ / with probability 1− τ ,
−2τ with probability τ :

The first experiment is for the case with the Gaussian design, and the covariates X are generated
from the multivariate normal distribution with mean 0 and covariance matrix Σ= .2−|i−j|/p×p.
The data-generating process is

Yi =1+
p∑

j=1
βjXji +α.Xi/+ "i, i=1, : : : , n,

where Xi = .X1i, : : : , Xpi/
T, {"i} and {Xi} are two independent and identically distributed se-

quences and are independent of each other. We consider four distributions for the error term "i:
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the standard normal distribution, the exponential distribution with rate 1, the χ2-distribution
with 4 degrees of freedom and the Student t-distribution with 3 degrees of freedom, which
correspond to the symmetric, asymmetric, leptokurtic and platykurtic cases respectively. The
coefficient vector is set to βi =1 for 1 � i � q and βj =0 for q+1 � j � p with the cardinality
of truly non-zero coefficients being q = 5. The function α.·/ is set to 0 for evaluating the size,
and two alternatives are considered:

(a) α.Xi/=0:5.Σ1�j�qXji/
2 (model 1) and

(b) α.Xi/=4 exp{−0:5.1+Σp
j=1βjXji/} (model 2).

To estimate the quantile regression model, we use the post-l1-penalized method in Belloni and
Chernozhukov (2011) along with the suggested tuning parameters in T̂ 2n. A quantile regression
estimation is performed on all covariates in T̂ 1n and CSG, but only on the truly active covariates,
i.e. the first q covariates, in the oracle test. As a result, the tests T̂ 1n and CSG are not applicable
when n<p, and the oracle test will not be affected when p increases and n is fixed.

We consider three quantile levels, τ = 0:25, 0.5, 0.75, and four combinations for sample size
n and the number of covariates p: .n, p/ = .100, 20/, .100, 40/, .200, 400/, .200, 1000/, where
the first two combinations refer to the case with n > p, whereas the last two are for the case
with n < p. The number of replications is set to 500, and we use B =500 for the bootstrapping
approximation in T̂ 1n and CSG.

Fig. 1 gives the receiver operating characteristic (ROC) curves of all four tests under the
alternative model 1 for the case of n>p, where the sample size is fixed at n=100. The proposed
test T̂ 2n dominates the two low dimensional tests, and it is more obvious when the number of
covariates increases from p=20 to p=40. Actually it is even as good as the oracle test, especially
at the lower quantile levels. Moreover, the proposed low dimensional test T̂ 1n outperforms CSG
for most cases with a similar performance when p is larger. Fig. 2 presents the ROC curves of
T̂ 2n and the oracle test for the case with n < p, where the sample size is n= 200. It can be seen
that T̂ 2n is comparable with the oracle test even for p=1000, especially at lower quantile levels.
The ROC curves under the alternative model (2) are also calculated for both cases of n>p and
n<p, and similar findings can be observed.

The second experiment is to evaluate our tests for the case with non-Gaussian covariates, and
a heavy-tailed design is considered. Specifically, the covariates X are generated from the multi-
variate Student t-distribution t.μ,Σ, ν/, where μ and Σ are the same as in the first experiment,
and the degrees of freedom are set to ν=6. All the other settings are the same as in the previous
experiment.

Figs 3 and 4 give the ROC curves under the alternative model 1 for the cases of n > p and
n < p respectively. Surprisingly the low dimensional test T̂ 1n has an even better performance
than the high dimensional test T̂ 2n at higher quantile levels. This may be due to the compromise
between two facts:

(a) T̂ 2n is designed especially for the high dimensional data; however,
(b) it aims to check the equality of the first two moments rather than that of two conditional

distributions as in T̂ 1n.

The other findings are similar to those in the first experiment.
The on-line supplementary file further reports the rejection rates of these tests at the level of

significance of 10%, and we have the following findings.

(a) Generally speaking, all tests have acceptable sizes, whereas the two low dimensional tests
T̂ 1n and CSG can control the size better;
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(b) For both tests T̂ 1n and CSG, the powers drop dramatically as the number of covariates
increases from p=20 to p=40, and actually they are not applicable when p>n.

(c) T̂ 2n has a similar performance to the oracle test when the number of covariates is not too
large, say p = 20, and still has a comparable power, although it becomes less powerful,
when p increases.

(d) Both T̂ 2n and the oracle test have a relatively lower power for the heavy-tailed covariates
than those for Gaussian covariates.

We may conclude that the proposed tests T̂ 1n and T̂ 2n can provide a reliable lack-of-fit check
for low dimensional and high dimensional data respectively.

6. Empirical analysis

6.1. Sales data
This subsection attempts to study how the sales of a company can be affected by other factors.
Note that the values of sales may vary in a very large range across different companies, and
hence a quantile regression model may be more suitable here.

The data were sampled from Forbes 500 companies. The variables include the amount of
sales in millions, Yi, the amount of assets in millions, X1i, profits in millions, X2i, the number
of employees in thousands, X3i, the type of market that the company is associated with, X4i,
the market value of the company in millions, X5i, and the cash flow in millions, X6i. All values
are for the year of 1986, and 79 companies are included. The data set was downloaded from
http://lib.stat.cmu.edu/DASL/Datafiles/Companies.html.

The high correlations can be observed among profits X2i, market values X5i and cash flow
X6i, and we then involved profits X2i in the model only. To assess the linearity assumption on the
relationship between sales Yi and four covariate variables at different quantiles, we considered
the model

Qτ .Yi|Xi/=β0 +
4∑

j=1
βjXji, i=1, : : : , 79,

where Xi = .X1i, : : : , X4i/
T.

We applied our test T̂ 1n to check the lack of fit for this model, and the bootstrapping procedure
in Section 3 was employed to approximate the null distribution with B = 5000 bootstrapped
samples. The estimated p-values are 0.87, 4 × 10−4 and 0.0 at three quantile levels τ = 0:25,
0.5, 0.75 respectively. This implies that the linear regression model may fit data well for those
companies with low sales, whereas contributions to sales from assets, profit and employee sizes
may no longer linearly increase for companies with relatively high sales.

To explore further the relationship between the response and covariates at τ =0:25, 0:5, 0.75,
we first took a logarithmic transformation of the data, i.e. we let Ỹ i = log.Yi/ and X̃ji = log.Xji/

with 1 � j � 4, and then we fitted a linear quantile model:

Qτ .Ỹ i|XÅ
i /=β0 +

4∑
j=1

βjX̃ji, i=1, : : : , 79:

The estimated p-values of our test T̂ n are 0.99, 0.81 and 0.43 at quantile levels τ = 0:25, 0:5,
0.75 respectively, and this confirms the existence of non-linearity in the original model. We also
performed the lack-of-fit test in He and Zhu (2003). However, all p-values are close to 1, and it
fails to distinguish the above two models.
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6.2. Gross domestic product growth rate data
This subsection attempts to analyse the data set in Barro and Lee (2013). The original data
set contains statistics of economic development from 138 different countries, and they were
collected quinquennially from 1950 to 2010 or averaged over a 5-year period between 1950 and
2010. The profile of a country’s economic growth can be depicted by using measurements such
as national accounts of people’s income, education status, population and fertility, government
expenditures, purchasing power parity deflators, political variables and trade policies. All eco-
nomic features have been recorded in detail and more extensive information can be found at
http://www.barrolee.com. A subset of the original data set is given in R package hdm,
manufactured by Chernozhukov et al. (2016), and it consists of n = 90 complete observations
with p=61 variables. We shall use this subset data to demonstrate the usefulness of our proposed
test T̂ 2n.

In the literature, many researchers have also studied the effect of lagged level of gross do-
mestic product (GDP) per capita on the current GDP. For example, in the classical Solow–
Swan–Ramsey growth model, there is a hypothesis of convergence in one country’s economic
development, which states that poorer countries should see faster economic growth than richer
countries, i.e. the estimated coefficient of the lagged level of GDP should be negative. We chose
the current GDP growth rates per capita as response Y , and the lagged GDP growth rates per
capita together with other economic features such as black market premium and free trade
openness and the other 58 characteristics are set to covariates. We then considered the following
quantile regression model:

Qτ .Yi|Xi/=β0 +
61∑

j=1
βjXji, i=1, : : : , 90,

where Xi = .X1i, X2i, : : : , X61i/. Since some covariates are skewed and/or heavy tailed, the log-
arithm and cube-root transformations were conducted accordingly.

l1-penalized quantile regression with the same settings as in the previous section was used to
fit the model, and the proposed test T̂ 2n was conducted to check the lack of fit at three quantile
levels τ =0:25, 0.5, 0.75. We also computed the test in Conde-Amboage et al. (2015), CSG, for
comparison, and the p-values are summarized in Table 1. It can be seen that all p-values of T̂ 2n

are smaller than 5%, and then the fitted model fails to provide a good fit to the data. Belloni and
Chernozhukov (2011) also found that l1-penalized quantile regression did not pick any features
at first, and we must shrink the penalty parameter such that some economic features can be
selected accordingly. We may believe that some important covariates were missed by the fitted
model. However, CSG fails to detect the problem, probably because p is close to n here.

As a matter of fact, variable selection has been an important issue in this study since the
number of observations is comparable with the number of covariates. Belloni and Chernozhukov
(2011) proposed the use of l1-penalized quantile regression with an adaptive method in choosing

Table 1. p-values of the T̂ 2n- and CSG tests

Quantile T̂ 2n-test CSG test
level τ p-value p-value

0.25 0.015 0.442
0.5 0.000 0.594
0.75 0.011 0.796
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Table 2. p-values of the CSG and oracle tests

Quantile Oracle test CSG test
level τ p-value p-value

0.25 0.058 0.502
0.5 0.346 0.570
0.75 0.007 0.786

penalty parameter λ to select the working model. According to the suggested relaxation of λ,
several covariates were chosen: lagged GDP growth rate X1, black market premium X2, political
instability X3, a measure of tariff restriction X4, infant mortality rate X5, ratio of government
‘consumption’ net of defence and education X6, exchange rate X7, ‘higher school complete’
percentage in the females population X8, ‘secondary school complete’ percentage in the males
population X9, females gross enrolment ratio for higher education X10, percentage of non-
education in the males population X11, population proportion over 65 years old X12 and average
years of secondary schooling in the males population X13. We treated these covariates as the
truly active covariates, and it then formed a low dimensional model:

Qτ .Yi|Xi/=β0 +
13∑

j=1
βjXji, i=1, : : : , 90,

where Xi = .X1i, X2i, : : : , X13i/. We conducted the CSG and the oracle tests again, and their
p-values are listed in Table 2, where the oracle test refers to T̂ 2n with the sparse structure being
known in advance (see also Section 5).

The test proposed rejects the hypothesis of using a linear model to describe the latent relation-
ship between current GDP growth rate and lagged GDP growth rate as well as other economic
features at quantile levels τ = 0:25, 0:75 at the level of significance 10%. It is consistent with
the intuition that low or high GDP growth rates may be related to much more complicated
social or political reasons, whereas a simple linear regression model may not be able to excavate
enough information from the true underlying correspondence. Meanwhile, we can attempt to
use a median linear regression model to provide some insights into interpreting the effects of a
country’s economic features on its GDP growth rate.

7. Conclusion and discussion

Our main contribution is to transform lack-of-fit tests for parametric quantile regression models
into checking the equality of two conditional distributions. This makes it possible to construct a
reliable test according to our experiences in covariates such as the number of covariates, sample
sizes and types of data (discrete or continuous covariates). As an illustration, by combining
several successful two-sample tests in the literature, this paper has constructed two lack-of-fit
tests, which are powerful for low dimensional and high dimensional data.

The tests that were proposed in this paper are for a fixed τ and can be easily extended to the
case with finite quantile levels. Recently more research in quantile regression has been conducted
on I ⊂ .0, 1/. See Koenker and Machado (1999), Koenker and Xiao (2002), Angrist et al. (2006),
Escanciano and Goh (2014) and Zheng et al. (2015). It is also interesting to extend the result in
this paper to this scenario, and we leave it for possible future research.
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Appendix A:Technical conditions

A.1. Assumptions for low dimensional data

Assumption 1. It holds that, uniformly for X ∈ Rp, f"|X.u/ − f"|X.0/ = O.|u|1=2/ as u → 0, and f"|X.0/
and its derivative f ′

"|X.0/ are bounded away from both 0 and ∞.

Assumption 2. E.‖X‖3/<∞, and matrices Σ0 and Σ1 are positive definite.

Assumption 3. The τ th quantile of Fw is 0,
∫ ∞

0 x−1dFw.x/=−∫ 0
−∞ x−1dFw.x/=0:5,

∫ ∞
−∞ |x|dFw.x/<∞

and there are two positive constants c1 and c2 such that c1 =− supx∈.−∞,0] Fw.x/ and c2 = inf x∈[0,∞/ Fw.x/,
where Fw.·/ is the distribution function of wi.

Assumption 1 restricts the conditional density of the error term "i, and it is commonly used in the
literature of quantile regression. Assumptions 1 and 2 are similar to conditions A1 and A2 in section 4.2
of Koenker (2005), and they make sure the existence of Bahadur representation of β̂n. Assumption 3 is
just conditions (Q3)–(Q5) of Feng et al. (2011).

Let zi = I."i < 0/, Zi = .XT
i , zi/

T, φτ .zk/= τ − zk and

κ.Zi, Zj , Zk/=‖Xi −Xj‖[ξij + .τ − zk/{ζif"i|Xi
.0/XÅT

i Σ−1
1 XÅ

k + ζjf"j |Xj
.0/XÅT

j Σ−1
1 XÅ

k }],

where

ζi = 1−2zi

2τ .1− τ /
− zi

2τ 2
+ 1− zi

2.1− τ /2
:

Denote

κ0.Zi, Zj , Zk/= 1
3!

∑
p

κ.Zi1 , Zi2 , Zi3 /, .11/

where Σp is the permutation of three distinct elements {i, j, k}. It is then the kernel of the U-statistic

U1n =
(

n
3

)−1 ∑
1�i<j<k�n

κ0.Zi, Zj , Zk/

which is used to derive the asymptotic distribution in theorems 1 and 2.

A.2. Assumptions for high dimensional data

Assumption 4. λ= C1
√{log.p/=n} for some C1 > 0, ‖β̃n −β0‖= Op[

√{q log.p∨n/=n}], card.β̃n/ =
Op.q/, max1� i�p Σp

i=1|bij| � C2 for C2 > 0 with Ω= .bij/ and the density of " is three times continuously
differentiable at the origin with the derivative f ′′′.0/ being bounded by a constant.

Assumption 5. There exist C3 > 0 and 0 < C4 < 1 such that C−1
3 � λmin.Σ/ � λmax.Σ/ � C3 and

max1� i<j �p |ri,j| � C4 < 1, where Σ and R = .ri,j/ are the covariance and correlation matrices of co-
variate X respectively.

Assumption 6. There is a subset Υ⊂{1, 2, : : : , p} with card.Υ/=o.p/ and a constant α0 > 0 such that,
for all γ> 0, max1� j �p,j �∈Υ sj.α0/ = o.pγ/ with sj.α0/ := card{i : |rij| � log.p/−1−α0}. Moreover, there is
some constant r< 1 and a sequence of numbers Λp,r such that card{Λ.r/} � Λp,r =o.p/.
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Assumption 7. The covariate X satisfies either of the following conditions.

(a) Sub-Gaussian-type tails: given log.p/=o.n1=5/, there are some constants η> 0 and K> 0 such that

E[exp{η.Xik −μi/
2=σii}]�K, 1� i�p:

(b) Polynomial-type tails: given some constants γ0, c1 > 0, p � c1n
γ0 and for some constants " > 0 and

K> 0 such that

E|.Xik −μi/=σ
1=2
ii |4γ0+4+" �K, 1� i�p:

Furthermore, we assume that, for a constant τ > 0,

min
1�i�j�p

γij

σiiσjj

� τ

holds, where γij =var{.Xik −μi/.Xjk −μj/}.

Assumption 8. There exist κ � 1
3 such that, for any i, j, l, m∈{1, 2, : : : , p},

E{.Xik −μi/.Xjk −μj/.Xmk −μm/.Xlk −μl/}=κ.σijσml +σimσjl +σilσjm/:

Assumption 4 is needed for the l1-penalized estimator β̃n and its debiased version β̂n (Bradic and Kolar,
2017). Assumption 5 consists of common assumptions in the high dimensional setting (Cai et al., 2013).
Assumption 6 further restricts the correlation matrix, whereas assumption 8 is used to control the fourth
moment (Cai et al., 2014). Assumption 7 specifies sub-Gaussian and polynomial-type distributions, and
those families include many commonly used distributions, such as normal and Student t-distributions (Cai
et al., 2013, 2014).
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