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ABSTRACT
The classical vector autoregressive model is a fundamental tool for multivariate time series analysis. How-
ever, it involves too many parameters when the number of time series and lag order are even moderately
large. This article proposes to rearrange the transition matrices of the model into a tensor form such that
the parameter space can be restricted along three directions simultaneously via tensor decomposition.
In contrast, the reduced-rank regression method can restrict the parameter space in only one direction.
Besides achieving substantial dimension reduction, the proposed model is interpretable from the factor
modeling perspective. Moreover, to handle high-dimensional time series, this article considers imposing
sparsity on factor matrices to improve the model interpretability and estimation efficiency, which leads to a
sparsity-inducing estimator. For the low-dimensional case, we derive asymptotic properties of the proposed
least squares estimator and introduce an alternating least squares algorithm. For the high-dimensional case,
we establish nonasymptotic properties of the sparsity-inducing estimator and propose an ADMM algorithm
for regularized estimation. Simulation experiments and a real data example demonstrate the advantages of
the proposed approach over various existing methods. Supplementary materials for this article are available
online.
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1. Introduction

High-dimensional time series is one of the most common
types of “big data” and can be found in many areas including
meteorology, genomics, finance, and economics (Hallin and
Lippi 2013). The classical vector autoregressive (VAR) model
is fundamental to multivariate time series modeling and has
recently been applied to the high-dimensional case under cer-
tain structural assumptions, for example, the banded structure
(Guo, Wang, and Yao 2016), network structure (Zhu et al. 2017),
and linear restrictions (Zheng and Cheng 2020). Consider the
VAR model of the form (Lütkepohl 2005; Tsay 2010):

yt = A1yt−1 + · · · + APyt−P + εt , 1 ≤ t ≤ T, (1)

where {yt} is the observed time series with yt = (y1t , . . . , yNt)′ ∈
R

N , {εt} are independent and identically distributed (iid) inno-
vations with εt = (ε1t , . . . , εNt)′, E(εt) = 0 and var(εt) < ∞,
Aj’s are N × N transition matrices of unknown parameters, and
T is the sample size. It can be difficult to perform the estima-
tion even when the dimensions N and P are moderately large
(De Mol, Giannone, and Reichlin 2008; Carriero, Kapetanios,
and Marcellino 2011; Koop 2013).

On the other hand, compared with model (1), the vector
autoregressive moving average (VARMA) model usually per-
forms better in practice since it can provide a more flexible auto-
correlation structure (Athanasopoulos and Vahid 2008; Chan,
Eisenstat, and Koop 2016). However, the VARMA model may
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have a serious identification problem (Chan, Eisenstat, and
Koop 2016; Wilms et al. 2017; Dias and Kapetanios 2018), and
its estimation is often unstable since the corresponding objective
function involves a high-order polynomial. As a result, it is
common in practice to employ a VAR model to approximate
VARMA processes, and the order P may be very large to pro-
vide a better fit for the data (Ravenna 2007). For example, to
guarantee the approximation accuracy, we need to assume that
P → ∞ and PT−1/3 → 0 as T → ∞ for univariate and
multivariate cases (Said and Dickey 1984; Li, Leng, and Tsai
2014). This makes the number of parameters in model (1), N2P,
much larger.

Therefore, to make inference on the VAR model for high-
dimensional time series, it is necessary to restrict the param-
eter space of model (1) to a reasonable number of degrees
of freedom. A direct method is to assume that the transition
matrices Aj’s are sparse and apply sparsity-inducing regularized
estimation, for example, the �1-regularization (Lasso or Dantzig
selector) for VAR models (Basu and Michailidis 2015; Han, Lu,
and Liu 2015; Kock and Callot 2015; Davis, Zang, and Zheng
2016; Wu and Wu 2016). However, unlike the traditional linear
regression, time series data have nonnegligible temporal and
cross-sectional dependencies, which will seriously affect the
accuracy of the regularized estimation. Moreover, as explained
in Remark 1 in Section 2, the stationarity of the VAR model
essentially entails that the average magnitude of parameters is
bounded by O(N−1/2). This makes the variable selection much
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more challenging and hence limits the popularity of sparsity-
inducing regularized estimation for time series data.

Another important approach to reducing the dimensionality
of model (1) arises naturally from the reduced-rank regression
(Yuan et al. 2007; Negahban and Wainwright 2011; Chen, Dong,
and Chan 2013; Basu, Li, and Michailidis 2019; Raskutti, Yuan,
and Chen 2019). The VAR model in (1) can be rewritten as

yt = A(C)xt + εt , (2)

where xt = (y′
t−1, . . . , y′

t−P)′, and A(C) = (A1, . . . , AP) is
assumed to have a low rank (Velu, Reinsel, and Wichern 1986;
Velu and Reinsel 2013). Based on the reduced-rank VAR model
in (2), Carriero, Kapetanios, and Marcellino (2011) considered
a Bayesian method to predict large macroeconomic data, and
both the number of variables N and the sample size T diverge to
infinity. However, unlike the reduced-rank regression, we may
have alternative ways to define the low-rankness of parameter
matrices Aj’s with P > 1. Specifically, the rank of A(C) is
the dimension of the column space of Aj’s. Denote A(R) =
(A′

1, A′
2, . . . , A′

P) and A(L) = (vec(A1), vec(A2), . . . , vec(AP))′,
where vec(Aj) is the vectorization of Aj. The ranks of A(R) and
A(L) are then the dimensions of the row space and vectorized
matrix space of Aj’s, respectively. The three dimensions are
different in general, and the corresponding low-rank struc-
tures have different physical interpretations; see Section 2 for
details. Similarly to model (2) above, Reinsel (1983) proposed
an autoregressive index model, where the low-rank assumption
was imposed on A(R). Moreover, the transition matrices Aj’s
may have a low-rank structure along different lags, that is, A(L)

may be low-rank. In fact, the VARMA model can be treated as
a parsimonious formulation for VAR models, since it restricts
the degrees of freedom on transition matrices over different lags
(Tsay 2010).

It is noteworthy that imposing the low-rank assumption on
any one of A(C), A(R), and A(L) leads to a different physical
interpretation as it amounts to reducing the dimensionality
along one of the three different directions. This inspires us to
rearrange the transition matrices Aj’s into a tensor. Interest-
ingly, the corresponding mode-1, -2, and -3 matricizations of
the tensor happen to be A(C), A(R), and A(L), respectively; see
Kolda and Bader (2009) and Section 2. By adopting the standard
Tucker decomposition for the transition tensor, different low-
rank structures can be assumed simultaneously along the three
directions, and hence the parameter space of the VAR model
can be efficiently restricted. We call the resulting model the
multilinear low-rank VAR model, since the Tucker ranks are
also called multilinear ranks.

In the literature, low-rank structures of high-dimensional
time series are commonly explored through factor models
(Stock and Watson 2005; Bai and Ng 2008; Stock and Watson
2011; Bai and Wang 2016). Similarly, as a means of low-rank
discovery for VAR processes, the proposed model is naturally
interpretable from the factor modeling perspective. As we will
discuss in Section 2.2, by imposing the low-rankness along three
directions, the proposed model can extract different dynamic
factors across response variables, predictor variables, and pre-
dictor time lags. Indeed, the proposed model can be written as
a static factor model (SFM, Bai and Wang 2016) yet endowed

with additional low-rank structures for more substantial dimen-
sion reduction. However, in contrast to factor models which
are mainly used for interpretation, it is worth noting that the
proposed model can be used for forecasting. On the other hand,
the dynamic factor model (DFM) in the literature can be con-
structed by combining the SFM with a certain dynamic struc-
ture for the latent factors (Stock and Watson 2011). Compared to
the DFM with VAR latent factors (Amengual and Watson 2007),
the proposed model may be more flexible in the sense that it can
extract different sets of dynamic factors from the response yt and
the lagged predictors yt−j’s, whereas the DFM restricts them to
be identical. In addition, the proposed model can capture the
possible low-rank structure across the P time lags.

Another important contribution of this article is to introduce
a sparse decomposition for the transition tensor to further
increase the estimation efficiency for much higher-dimensional
time series data. In the literature, sparsity-inducing regulariza-
tion has been widely considered in reduced-rank regression to
improve interpretability and efficiency. For example, Chen and
Huang (2012) and Bunea, She, and Wegkamp (2012) considered
row-wise sparsity in singular value decomposition, where zero
rows imply irrelevance of the corresponding predictors to the
responses; Lian, Feng, and Zhao (2015) proposed to directly
restrict the rank of the coefficient matrix with entry-wise spar-
sity, which however does not lead to a sparse decomposition;
Chen, Chan, and Stenseth (2012) obtained a sparse singular
value decomposition of the coefficient matrix by slightly relax-
ing the strict orthogonality; and Uematsu et al. (2019) achieved
the sparsity and strict orthogonality simultaneously. Note that
as in Uematsu et al. (2019), our estimation method is able to
keep the strict orthogonality of the factor matrices in the tensor
decomposition.

Our work is also related to the fast-growing literature on
tensor regression (see, e.g., Zhou, Li, and Zhu 2013; Li and
Zhang 2017; Sun and Li 2017; Li et al. 2018; Raskutti, Yuan,
and Chen 2019). Whereas most of the existing work focuses
on tensor-valued predictors or responses, we employ tensor
decomposition as a novel approach to the dimensionality reduc-
tion of vector-valued time series models. To summarize, the
proposed methods have the following attractive features:

(a) The proposed model substantially reduces the dimension
along three directions of the transition tensor, allowing each
direction to have a different low-rank structure. This results
in interpretable physical structures and interesting connec-
tions with factor models in the literature, and allows us to
handle much higher dimensional data than the reduced-
rank VAR model in (2).

(b) Through the sparsity assumption on the three factor
matrices, the proposed high-dimensional method further
improves the model interpretability and estimation effi-
ciency by selecting important variables for each response,
predictor or temporal factor. The corresponding estima-
tion can be accomplished by an ADMM algorithm which
effectively untangles the �1-regularization and orthogonal-
ity constraints.

The rest of the article is organized as follows. Section 2
introduces the proposed model and discusses its connections
with factor models. Section 3 presents asymptotic properties
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of the least squares estimator in low dimensions and an alter-
nating least squares algorithm. For the high-dimensional case,
the sparse higher-order reduced-rank estimation is proposed
in Section 4, taking into account both the orthogonality and
sparsity. Its nonasymptotic properties are established, and an
ADMM algorithm is developed. A consistent rank selection
method is proposed in Section 5. Simulation experiments and
real data analysis are presented in Sections 6 and 7, respectively.
A short discussion is given in Section 7. All technical proofs
are given in a separate online supplementary file, and all codes
and datasets in this article can be found at https://github.com/
diwangstat/VAR-Tensor/.

2. Multilinear Low-Rank Vector Autoregression

2.1. Tensor Decomposition

Tensors, also known as multidimensional arrays, are natural
higher-order extensions of matrices. A multidimensional array
X ∈ R

p1×···×pK is called a Kth-order tensor, and the order
of a tensor is known as the dimension, way or mode; we refer
readers to Kolda and Bader (2009) for a detailed review on
tensor notations and operations. This article will focus on third-
order tensors.

Throughout the article, we denote vectors by small bold-
face letters y, x, . . . , matrices by capital letters Y , X, . . . , and
tensors by Euler script capital letters Y, X, . . . . For a vector
x, denote by ‖x‖1 and ‖x‖2 its �1 and �2 norms, respectively.
For a matrix X, denote by ‖X‖F, ‖X‖1, ‖X‖0, ‖X‖op, ‖X‖∗,
vec(X), X′ and σj(X) its Frobenius norm, vectorized �1 norm
(i.e., ‖X‖1 = ‖vec(X)‖1), �0 “norm,” spectral norm, nuclear
norm, vectorization, transpose and the jth largest singular value,
respectively. For two symmetric matrices X and Y , we write
X ≤ Y if Y − X is positive semidefinite. Furthermore, for a

tensorX ∈ R
p1×p2×p3 , let ‖X‖F =

(∑p1
i=1

∑p2
j=1

∑p3
k=1 X

2
ijk

)1/2

and ‖X‖0 = ∑p1
i=1

∑p2
j=1

∑p3
k=1 1(Xijk 	= 0) be its Frobenius

norm and �0 “norm,” respectively.
For a tensor X ∈ R

p1×p2×p3 , its mode-1 matricization X(1)

is defined as the p1-by-(p2p3) matrix whose {i, (k − 1)p3 + j}th
entry is Xijk, for 1 ≤ i ≤ p1, 1 ≤ j ≤ p2, and 1 ≤ k ≤ p3,
and X(1) contains all mode-1 fibers {(X[:,i2,i3]) ∈ R

p1 : 1 ≤
i2 ≤ p2, 1 ≤ i3 ≤ p3}. The mode-2 and mode-3 matricizations
can be defined similarly. The matricization of tensors helps to
link the concepts and properties of matrices to those of tensors.
The mode-1 multiplication ×1 of a tensor X ∈ R

p1×p2×p3 and a
matrix Y ∈ R

q1×p1 is defined as

X ×1 Y =
( p1∑

i=1
XijkYsi

)
1≤s≤q1,1≤j≤p2,1≤k≤p3

. (3)

Multiplications ×2 and ×3 can be defined similarly.
Unlike matrices, there is no universal definition of the rank

for tensors. In this article, we consider the multilinear ranks
(r1, r2, r3) of a tensor X ∈ R

p1×p2×p3 , where

r1 = rank1(X) := rank(X(1))

= dim(span{X[:,i2,i3] ∈ R
p1 : 1 ≤ i2 ≤ p2, 1 ≤ i3 ≤ p3}),

(4)

and r2 and r3 are the ranks of X(2) and X(3), respectively. Note
that r1, r2, and r3 are analogous to the row rank and column rank
of a matrix, but these three ranks are not necessarily equal. The
multilinear ranks are also known as Tucker ranks, as they are
closely related to the Tucker decomposition.

For a tensor X ∈ R
p1×p2×p3 , if rankj(X) = rj for 1 ≤

j ≤ 3, then there exists a Tucker decomposition (Tucker 1966;
De Lathauwer, De Moor, and Vandewalle 2000),

X = Y ×1 Y1 ×2 Y2 ×3 Y3,

where Y ∈ R
r1×r2×r3 is the core tensor, Y j ∈ R

pj×rj with 1 ≤
j ≤ 3 are factor matrices, and the above decomposition can also
be denoted by X = [[Y; Y1, Y2, Y3]].

2.2. Multilinear Low-Rank Vector Autoregression

For the VAR model in (1), we can rearrange its transition matri-
ces into a tensor A ∈ R

N×N×P; see Figure 1 for an illustration.
Denote by A(j) the mode-j matricization of A, where 1 ≤
j ≤ 3. It can be verified that A(1) = (A1, . . . , AP), A(2) =
(A′

1, A′
2, . . . , A′

P) and A(3) = (vec(A1), vec(A2), . . . , vec(AP))′,
which correspond to the column, row and vectorized matrix
spaces of Aj’s, respectively.

If the transition tensor A has multilinear low ranks
(r1, r2, r3), that is, rank(A(j)) = rj for 1 ≤ j ≤ 3, then there
exists a Tucker decomposition, A = G ×1 U1 ×2 U2 ×3 U3 or
A = [[G; U1, U2, U3]], where G ∈ R

r1×r2×r3 is the core tensor,
and U1 ∈ R

N×r1 , U2 ∈ R
N×r2 and U3 ∈ R

P×r3 are factor
matrices. As a result, model (1) can be written as

yt = (G ×1 U1 ×2 U2 ×3 U3)(1)xt + εt , (5)

where xt = (y′
t−1, . . . , y′

t−P)′. For simplicity, we call model (5)
the multilinear low-rank VAR model.

In addition, since (G×1 U1 ×2 U2 ×3 U3)(1) = U1G(1)(U3 ⊗
U2)′, where ⊗ is the Kronecker product, model (5) also has the
following equivalent forms

yt = U1G(1)(U3 ⊗ U2)
′xt + εt = U1G(1)vec(U ′

2XtU3) + εt ,
(6)

where Xt = (yt−1, . . . , yt−P).

Assumption 1. All roots of the matrix polynomial A(z) = IN −
A1z − · · · − APzP, z ∈ C, are outside the unit circle, where C is
the set of complex numbers.

Assumption 1 is the sufficient and necessary condition for
the existence of a unique strictly stationary solution to model
(1). When P = 1, Assumption 1 is equivalent to ρ(A1) < 1,
where ρ(A1) denotes the spectral radius of A1.

Remark 1. To gain insight into the effect of the stationarity
condition on the entries of A1, we may consider the following
result regarding random matrices. Suppose that the entries of
A1 are iid with mean zero and variance σ 2, that is, they are
equally important. Then, by Bai (1997), N−1/2ρ(A1) → σ in
probability as N → ∞. In other words, when ρ(A1) < 1, a
larger N will shrink the entries of A1 toward zero.

https://github.com/diwangstat/VAR-Tensor/
https://github.com/diwangstat/VAR-Tensor/
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Figure 1. Rearranging P transition matrices of a VAR model into a tensor.

Note that the Tucker decomposition in (5) is not
unique since [[G; U1, U2, U3]] = [[G ×1 O1 ×2 O2 ×3
O3; U1O−1

1 , U2O−1
2 , U3O−1

3 ]] for any nonsingular matrices
O1 ∈ R

r1×r1 , O2 ∈ R
r2×r2 and O3 ∈ R

r3×r3 . Hence, we
consider a special Tucker decomposition: the higher-order
singular value decomposition (HOSVD); see De Lathauwer,
De Moor, and Vandewalle (2000). Specifically, we let U j be a tall
matrix consisting of the top rj left singular vectors of A(j) for
each 1 ≤ j ≤ 3, where (r1, r2, r3) are the multilinear ranks of the
tensor A. Let the core tensor G = A×1 U ′

1 ×2 U ′
2 ×3 U ′

3. Then
G has the following all-orthogonal property: for each 1 ≤ j ≤ 3,
the rows of G(j) are pairwise orthogonal.

Remark 2. Due to the HOSVD, the proposed multilinear low-
rank VAR model in (5) has only r1r2r3 + (N − r1)r1 + (N −
r2)r2 + (P − r3)r3 parameters, that is, the dimension increases
linearly in N and P; see Zhang (2019). By contrast, model (1) has
N2P parameters, while the reduced-rank VAR model in (2) has
(NP + N − r1)r1 parameters, where r1 = rank(A(1)).

Since U1 is orthonormal, it follows from (6) that

U ′
1yt = G(1)(U3 ⊗ U2)

′xt + U ′
1εt = G(1)vec(U ′

2XtU3)+ U ′
1εt .
(7)

The above representation reveals an interesting dynamic fac-
tor based interpretation for the proposed model. Specifically,
U ′

1yt := f Response
t = (f Response

1,t , . . . , f Response
r1,t )′ ∈ R

r1 represents
r1 response factors across the N variables of yt , where f Response

j,t =
u′

1,jyt = ∑N
i=1(U1)ijyit is the jth response factor, for 1 ≤ j ≤ r1.

Thus, if the (i, j)th entry of U1 is zero, that is, (U1)ij = 0, then yit

is irrelevant to f Response
j,t . In other words, U1 can be interpreted

as the loadings of the response factors.
On the right side of (7), the predictor has the bilinear

form U ′
2XtU3. On the one hand, U ′

2Xt := FPredictor
t =

(f Predictor
1,t , . . . , f Predictor

r2,t )′ ∈ R
r2×P represents r2 predictor factors

across the N variables (rows) of the predictor matrix Xt , where
f Predictor

j,t = ∑N
i=1(U2)ijxit is the jth predictor factor, for j =

1, . . . , r2, with xit = (yi,t−1, . . . , yi,t−P)′ for 1 ≤ i ≤ N. Hence,
if (U2)ij = 0, then xit is irrelevant to f Predictor

j,t . On the other
hand, U ′

3X′
t := FLag

t = (f Lag
1,t , . . . , f Lag

r3,t )
′ ∈ R

r3×N represents r3
temporal factors across the P time lags (columns) of the predictor
matrix Xt , where f Lag

j,t = ∑P
i=1(U3)ijyt−i is the jth temporal

factor, for j = 1, . . . , r3. As a result, (U3)ij = 0 implies that
the ith lagged predictor yt−i is irrelevant to f Lag

j,t . Therefore, U2
and U3 can be interpreted as the loadings of the predictor and
temporal factors, respectively.

For simplicity, we call r1, r2 and r3 the response, predictor and
temporal ranks, respectively. Similar formulations can be found
in matrix variate regressions (e.g., Zhao and Leng 2014; Ding
and Cook 2018). The response, predictor and temporal factors
interpretations of (7) reveal that the proposed model is related
to factor modeling, one of the most widely used techniques for
high-dimensional time series. We will explore the similarities
and differences between them in the next subsection.

2.3. Connections With Factor Modeling for Time Series

In the literature, low-rank structures of high-dimensional time
series are commonly explored through factor models (Stock and
Watson 2005; Bai and Ng 2008; Stock and Watson 2011; Bai and
Wang 2016). The multilinear low-rank assumption of A in the
proposed model fulfills a similar purpose as it extracts dynamic
factors along three dimensions, as shown in our discussion
about (7). Meanwhile, the proposed model can be used directly
for forecasting, which is another attractive feature compared to
factor models. In the following, we take a closer look at the factor
structures of the proposed model and both SFM and DFM in
the literature, and discuss some interesting connections between
them.

The SFM is commonly written as

yt = �f t + et , (8)

where yt ∈ R
N is the observed time series, f t ∈ R

r are r latent
factors with r � N, � ∈ R

N×r is the factor loading matrix,
and et ∈ R

N is the random error. The usual normalization
restrictions require that F′F/T = Ir and that �′� ∈ R

r×r is
a full-rank diagonal matrix, where F = (f 1, . . . , f T)′; see Bai
and Wang (2016).

We can show that the proposed model in (6) has an SFM
representation. Specifically, as shown in Section E of the sup-
plementary materials, there exist � ∈ R

N×r1 and f t ∈ R
r1 such

that

yt = U1G(1)(U3 ⊗ U2)
′xt + εt = �f t + εt , (9)

for t = 1, . . . , T, where � and the resulting F satisfy the afore-
mentioned normalization restrictions, and f t is the normalized
version of G(1)(U3 ⊗ U2)

′xt ∈ R
r1 . Let span(·) denote the

column space of a matrix, and it can be verified that span(�) =
span(U1).

Remark 3. Consider {yt} generated by the proposed model.
A useful by-product of representation (9) is that the low-
dimensional subspace span(U1) can actually be estimated by
span(�̂), where �̂ is the estimator of � obtained by fitting
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an SFM with r = r1. Moreover, let �1 = �(�′�)−1/2 be
the orthonormalization of �. Then span(�1) = span(�) =
span(U1), and their orthogonal projectors are identical, namely
�1�

′
1 = U1U ′

1. Thus, the estimation error of span(U1) can be
measured by the commonly used subspace distance ‖̂�1̂�

′
1 −

U1U ′
1‖2

F, where ̂�1 = ̂�(̂�
′
̂�)−1/2; see Vu and Lei (2013).

On the other hand, the DFM can be defined by combining
model (8) with a certain dynamic structure, for example, the
VAR, for the latent factor process f t (Amengual and Watson
2007). To fix ideas, suppose that f t evolves as the VAR(1),

f t = Bf t−1 + ξ t , (10)

where B ∈ R
r×r is the transition matrix, and ξ t ∈ R

r is
the random error. Let wt = �f t and ut = �ξ t . Then, the
conjunction of (8) and (10) can also be written as

yt = wt + et , wt = VCV ′wt−1 + ut , (11)

where D = �′� is diagonal, V = �D−1/2 is orthonormal,
and C = D1/2BD−1/2 ∈ R

r×r . Interestingly, (11) resembles the
VAR with measurement error, where yt is the observed outcome
of the true VAR(1) process wt subject to measurement error et .
Note that the naive estimation ignoring the measurement error
of the autoregressive process will result in asymptotic biases (see,
e.g., Staudenmayer and Buonaccorsi 2005).

However, if et = 0, we may gain more insights by comparing
the DFM in (11) to the proposed model of lag order one. Note
that when P = 1 the latter reduces to the reduced-rank VAR,

yt = U1G(1)U ′
2yt−1 + εt or U ′

1yt = G(1)U ′
2yt−1 + U ′

1εt ,

with U1 and U2 being orthonormal and r1 = r2, while the DFM
model in (11) with et = 0 has the form of

V ′yt = CV ′yt−1 + V ′ut .

Hence, we may argue that the proposed model is more flexible
than the DFM in (9), as the former can accommodate different
Two yt and two yt−j’s in the highlighted sentence need to be
changed to bold format to be identical. It is also worth noting
that when P > 1, another advantage of the proposed model
is that it can capture the possible low-rank structure across
time lags of the predictors; see (7) in the previous subsection.
Lastly, we note that the proposed model may be extended
along the line of the factor augmented VAR models (FAVAR)
(Bernanke, Boivin, and Eliasz 2005) by incorporating known
low-dimensional factors.

Remark 4. In contrast to the proposed model, the classical factor
model in the general form of (8) is not specific to VAR models,
since it allows for general latent factors. However, the general
factor model in (8) cannot be directly used for forecasting unless
an additional dynamic structure is imposed on the latent factor
process, for example, (10). As discussed above, if the multilinear
low-rank assumption holds, the proposed model can be more
favorable than the DFM.

3. Low-Dimensional Time Series Modeling

3.1. Multilinear Low-Rank Least Squares Estimation

For the multilinear low-rank VAR model in (5) with ranks
(r1, r2, r3), the multilinear low-rank (MLR) least squares estima-
tor can be defined as

̂AMLR ≡ [[̂G; ̂U1, ̂U2, ̂U3]] = arg minL(G, U1, U2, U3), (12)

where

L(G, U1, U2, U3) = 1
T

T∑
t=1

‖yt −(G×1 U1 ×2 U2 ×3 U3)(1)xt‖2
2.

(13)
We will derive asymptotic properties of ̂AMLR when both N
and P are fixed and the true multilinear ranks (r1, r2, r3) are
known. Note that the minimization in (12) is unconstrained,
so the Tucker decomposition [[̂G; ̂U1, ̂U2, ̂U3]] of ̂AMLR is not
unique.

Let φ = (vec(G(1))
′, vec(U1)

′, vec(U2)
′, vec(U3)

′)′ be the
true value of the vectorized HOSVD components and ̂φMLR =
(vec(̂G(1))

′, vec(Û1)
′, vec(Û2)

′, vec(Û3)
′)′ be the correspond-

ing estimator. Let h(φ) = vec(A(1)) = vec(U1G(1)(U3 ⊗ U2)
′)

be a function of φ. Let �ε = var(εt), �j = cov(yt+j, yt) with
j ≥ 0,

�∗ =

⎡⎢⎢⎢⎣
�0 �1 . . . �P−1
�′

1 �0 . . . �P−2
...

...
. . .

...
�′

P−1 �′
P−2 . . . �0

⎤⎥⎥⎥⎦ ,

and J = �−1
ε ⊗ �∗. Denote

H = ∂h
∂φ

=
(
(U3 ⊗ U2 ⊗ U1),

[(U3 ⊗ U2)G
′
(1)] ⊗ IN , T21{[(U1 ⊗ U3)G

′
(2)] ⊗ IN},

T31{[(U1 ⊗ U2)G
′
(3)] ⊗ IP}

)
,

(14)

where Tij is an (N2P) × (N2P) permutation matrix such that
vec(A(j)) = Tijvec(A(i)) with 1 ≤ i, j ≤ 3.

Theorem 1. Suppose that the time series {yt} is generated by
model (5) with E‖εt‖4

2 < ∞, both N and P are fixed, and
(r1, r2, r3) are known. Then, under Assumption 1,

√
T{vec(( ̂AMLR)(1)) − vec(A(1))} → N(0, �MLR) (15)

in distribution as T → ∞, where �MLR = H(H′JH)†H′, and †
denotes the Moore–Penrose inverse.

The proof of Theorem 1 relies on the technique for deriv-
ing asymptotic distributions of overparameterized models in
Shapiro (1986). It does not require that G and U j’s are identi-
fiable, nor does it require imposing identification constraints on
the estimation in (12).

However, if we are further interested in estimating the true
components G and U j’s in the HOSVD of A, the identifiability
of these components, that is, the uniqueness of the HOSVD, will
be required. This is guaranteed by the following assumption.
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Assumption 2. For each 1 ≤ j ≤ 3, (i) the singular values of
A(j) are distinct, and (ii) the first element in each column of U j
is positive.

In Assumption 2, Condition (i) avoids indeterminacy of the
factor loading vectors and holds generally in practice. Condition
(ii) rules out sign switches in U j and is commonly used in low-
rank matrix models (Li et al. 2016).

Accordingly, based on the unconstrained estimator ̂AMLR,
we can define each ̂U j uniquely as the top rj left singular vectors
of ( ̂AMLR)(j) such that the first element in each column of ̂U j

is positive, and set ̂G = [[ ̂AMLR; ̂U ′
1, ̂U ′

2, ̂U ′
3]]. As a result, the

estimators ̂G and ̂U j’s are consistent and asymptotically normal.

Corollary 1. Suppose that the conditions of Theorem 1 and
Assumption 2 hold. Then

√
T{vec(̂G)−vec(G)},

√
T{vec(̂U1)−

vec(U1)},
√

T{vec(̂U2)−vec(U2)}, and
√

T{vec(̂U3)−vec(U3)}
converge to normal distributions with mean zero as T → ∞.

The next corollary shows that the proposed estimator ̂AMLR
is asymptotically more efficient than the ordinary least squares
(OLS) estimator

̂AOLS = arg minB∈RN×NP

T∑
t=1

‖yt − Bxt‖2
2

for the full VAR model in (1) and the reduced-rank regression
(RRR) estimator

̂ARRR = arg minB∈RN×NP , rank(B)≤r1

T∑
t=1

‖yt − Bxt‖2
2

for the reduced-rank VAR model in (2), where r1 is the rank of
A(1). Denote by ̂AOLS and ̂ARRR the transition tensors formed
by ̂AOLS and ̂ARRR, respectively.

Corollary 2. Under the conditions of Theorem 1,√
T{vec(( ̂AOLS)(1)) − vec(A(1))} → N(0, �OLS) and√
T{vec(( ̂ARRR)(1)) − vec(A(1))} → N(0, �RRR) in

distribution as T → ∞. Moreover, it holds that �MLR ≤
�RRR ≤ �OLS.

3.2. Alternating Least Squares Algorithm

Let Ft = σ(εt , εt−1, . . .) be the σ -field generated by {εs, s ≤ t}
and recall that Xt = (yt−1, . . . , yt−P). The objective function
in (12) is a nonlinear function of G, U1, U2, and U3. However,
from model (5), we have

E(yt|Ft−1) =
(
(x′

t(U3 ⊗ U2)G
′
(1)) ⊗ IN

)
vec(U1)

= U1G(1)((U ′
3X′

t) ⊗ Ir2)vec(U ′
2)

= U1G(1)(Ir3 ⊗ (U ′
2Xt))vec(U3)

= (((U3 ⊗ U2)
′xt)

′ ⊗ U1)vec(G(1)),

(16)

which implies that the objective function in (12) is linear with
respect to any of G, U1, U2, and U3 when the other three are
fixed.

Algorithm 1 Alternating least squares algorithm for ̂AMLR

Initialize: A(0)

HOSVD: A(0) ≈ G(0) ×1 U(0)
1 ×2 U(0)

2 ×3 U(0)
3 with multilinear

ranks (r1, r2, r3)
repeat k = 0, 1, 2, . . .

U(k+1)
1 ← arg minU1

∑T
t=1 ‖yt − ((x′

t(U(k)
3 ⊗

U(k)
2 )G

(k)′
(1) ) ⊗ IN)vec(U1)‖2

2

U(k+1)
2 ← arg minU2

∑T
t=1 ‖yt −

U(k+1)
1 G

(k)
(1)((XtU(k)

3 )′ ⊗ Ir2)vec(U ′
2)‖2

2

U(k+1)
3 ← arg minU3

∑T
t=1 ‖yt − U(k+1)

1 G
(k)
(1)(Ir3 ⊗

(U(k+1)′
2 Xt))vec(U3)‖2

2
G(k+1) ← arg minG

∑T
t=1 ‖yt − (((U(k+1)

3 ⊗
U(k+1)

2 )′xt)′ ⊗ U(k+1)
1 )vec(G(1))‖2

2
A(k+1) ← G(k+1) ×1 U(k+1)

1 ×2 U(k+1)
2 ×3 U(k+1)

3
until convergence
Finalize: ̂U i ← top ri left singular vectors of ̂A(i) with positive
first elements, 1 ≤ i ≤ 3

̂G ← [[ ̂A; ̂U ′
1, ̂U ′

2, ̂U ′
3]]

Given the multilinear ranks (r1, r2, r3), we can employ Algo-
rithm 1 to find ̂AMLR. Note that this is an alternating least
squares algorithm where each step has a closed-form solution. In
practice, the multilinear ranks need to be selected consistently,
and we relegate the details to Section 5. The following proposi-
tion gives the convergence property of Algorithm 1.

Proposition 1. Suppose that the stationary points of
the objective function in (12) are isolated, up to an
arbitrary nonsingular linear transformation. Then φ(k)

converges to a stationary point as k → ∞, where φ(k) =
(vec(G(k))′, vec(U(k)

1 )′, vec(U(k)
2 )′, vec(U(k)

3 )′)′. Moreover, let
φ(∞) = (vec(G(∞))′, vec(U(∞)

1 )′, vec(U(∞)
2 )′, vec(U(∞)

3 )′)′ be
a strict local minimum of the objective function. Then {φ(k)}
will be attracted to φ(∞) if the initial value φ(0) is sufficiently
close to φ(∞).

Remark 5. If the sample size is sufficiently large, by Corollary 2,
̂AOLS can be used as the initial value A(0) of Algorithm 1. For

smaller sample sizes, ̂ARRR or the nuclear norm estimator to be
discussed in Section 5 can be employed instead. Moreover, Algo-
rithm 1 does not guarantee convergence to the global solution
defined in (12). As a result, in practice, we recommend a random
initialization method withA(0) = ̂Apre+T−1/2T, where ̂Apre is
a preliminary estimate, say, ̂AOLS or ̂ARRR, and T ∈ R

N×N×P is
a random perturbation whose entries are drawn independently
from N(0, 1). Many randomized initial values can be tried, and
the solution which yields the smallest value for the objective
function will be adopted.

Remark 6. Algorithm 1 corresponds to the unconstrained esti-
mation in (12). Thus, we do not need the orthogonality con-
straints ofG and U i’s. The unidentifiability of the Tucker decom-
position does not affect the convergence of the algorithm, since
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Proposition 1 does not require that the convergent sequence φ(k)

is unique. Moreover, note that the final estimates ̂G and ̂U i’s
in Algorithm 1 are obtained from the unconstrained estimate
of A, which is consistent with the definitions of ̂G and ̂U i’s in
Corollary 1. Similar alternating algorithms without imposing
identification constraints can be found in the literature of tensor
decomposition (see, e.g., Zhou, Li, and Zhu 2013; Li et al. 2018).

4. High-Dimensional Time Series Modeling

4.1. Sparse Higher-Order Reduced-Rank VAR

As discussed in Section 2.2, the proposed model can effectively
capture the dynamic information along three dimensions by
response, predictor, and temporal factors, with U1, U2, and U3
representing the corresponding factor loadings. However, when
the dimensions N and/or P are very large, the fitted loading
matrices often contain many small values, indicating relatively
insignificant contribution of certain variables or lags to the
factors. For example, if the (i, j)th entry of U1 is very small, then
yit may be irrelevant to the jth response factor, with 1 ≤ i ≤ N
and 1 ≤ j ≤ r1; see also the discussion below (7) for similar
interpretations regarding U2 and U3.

To improve the interpretability, we may shrink the small
values in the factor loading matrices to zero by imposing sparsity
assumptions on U i’s. This allows us to substantially reduce the
number of unknown parameters while performing data-driven
variable selection for each factor, and hence the estimation
efficiency is also improved; see Chen, Chan, and Stenseth (2012)
and Uematsu et al. (2019).

Specifically, we introduce the following �1-penalized sparse
higher-order reduced-rank (SHORR) estimator:

̂ASHORR ≡ [[̂G; ̂U1, ̂U2, ̂U3]] = arg min
G,U1,U2,U3

{
L(G, U1, U2, U3)

+ λ‖U3 ⊗ U2 ⊗ U1‖1
}

(17)

subject to

G ∈ AO(r1, r2, r3) and U ′
iU i = Iri , i = 1, 2, 3, (18)

where L(G, U1, U2, U3) is defined as in (13), and
AO(r1, r2, r3) = {G ∈ R

r1×r2×r3 : G(i) is row-orthogonal, i =
1, 2, 3}. Unlike the unconstrained estimation in (12), the
orthogonality constraints in (18) are necessary; otherwise, the
sparsity patterns of U i cannot be identified. As in Section 3, we
will derive the statistical properties of the proposed estimator
under the true multilinear ranks (r1, r2, r3), while a consistent
rank selection procedure will be discussed in Section 5.

Remark 7. The proposed SHORR estimation method is differ-
ent from the row-sparse reduced-rank regression that has been
studied extensively in the literature (Bunea, She, and Wegkamp
2012; Chen and Huang 2012). We avoid imposing the row-
sparsity because (1) it would restrict the flexibility and inter-
pretability of the VAR model, and (2) with a row-sparse response
factor matrix U1, those unselected time series cannot be pre-
dicted at all. Thus, we consider the general sparsity structure for
U i’s rather than the row-sparsity.

Remark 8. Alternatively, one might consider penalizing each U i
individually, for example, with the penalty term

∑3
i=1 λi‖U i‖1.

Unfortunately, the three tuning parameters will bring about
much higher computational costs and significant theoretical
difficulties. To circumvent this problem, the SHORR estimator
induces sparsity for U1, U2, and U3 jointly since ‖U3 ⊗ U2 ⊗
U1‖1 = ‖U3‖1‖U2‖1‖U1‖1. Implementation of this joint
penalty is convenient through the alternating algorithm to be
introduced in Section 4.3. Similar ideas of joint penalization can
be found in the literature, for example, the joint Lasso penalty
in Zhao and Leng (2014) and the joint penalty for left and right
singular vectors for sparse SVD in Chen, Chan, and Stenseth
(2012). Moreover, when P is relatively small, we might wish to
impose sparsity on U1 and U2 only, and then ‖U3 ⊗ U2 ⊗ U1‖1
can be replaced by ‖U2 ⊗ U1‖1.

4.2. Theoretical Properties of the SHORR Estimator

To derive the nonasymptotic estimation and prediction error
bounds of the SHORR estimator, we make the following
assumptions.

Assumption 3 (Gaussian error). The errors {εt} are iid Gaussian
random vectors with mean zero and positive definite covariance
matrix �ε .

Assumption 4 (Sparsity). Each column of the factor matrices U i
has at most si nonzero entries, for i = 1, 2, 3.

Assumption 5 (Restricted parameter space). The parameter space
for G and U i with 1 ≤ i ≤ 3 is � = {G ∈ AO(r1, r2, r3) :
σ1(G(j)) ≤ ḡ < ∞, for 1 ≤ j ≤ 3} ×U1 ×U2 ×U3, where Ui =
{U ∈ R

pi×ri : U ′U = Iri , and U2
ij ≥ ν > 0 or U ij = 0} with

p1 = p2 = N and p3 = P, and ν is a uniform lower threshold
for elements of U i’s.

Assumption 6 (Relative spectral gap). The nonzero singular
values of A(i) satisfy that σ 2

j−1(A(i)) − σ 2
j (A(i)) ≥ δσ 2

j−1(A(i))

for 2 ≤ j ≤ ri and 1 ≤ i ≤ 3, where δ is a positive constant.

Assumption 3 enables us to apply the concentration inequal-
ities for VAR models in Basu and Michailidis (2015). The Gaus-
sian condition may be relaxed to sub-Gaussianity by techniques
in Zheng and Raskutti (2019). Assumption 4 states the sparsity
of each factor matrix. Assumption 5 imposes an upper bound on
the core tensorG, which is not a stringent assumption since large
singular values inG could cause nonstationarity of the VAR pro-
cess. The lower threshold ν for the U i’s is essential to restrict the
estimation error to a subspace such that the restricted eigenvalue
condition (Bickel, Ritov, and Tsybakov 2009) can be established.
Note that ν may shrink to zero as the dimension increases, so
this condition is not too stringent. Assumption 6 guarantees that
the singular values of each A(i) are well separated. This rules
out unidentifiability and allows us to derive the upper bound
for the perturbation errors in Lemma 1 in Section D of the
supplementary materials.

Assumption 1 guarantees that the eigenvalues of the Hermi-
tian matrix A∗(z)A(z) over the unit circle {z ∈ C : |z| = 1}
are all positive, where A∗(z) denotes the conjugate transpose of
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A(z). Following Basu and Michailidis (2015), let

μmin(A) = min|z|=1
λmin(A∗(z)A(z)) and

μmax(A) = max|z|=1
λmax(A∗(z)A(z)),

where λmin(·) and λmax(·) denote the minimum and maximum
eigenvalues of a matrix, respectively. It holds that

μmin(A) = min
θ∈[−π ,π ]λmin

⎛⎝⎛⎝IN −
P∑

p=1
A′

peipθ

⎞⎠
×

⎛⎝IN −
P∑

p=1
A′

pe−ipθ

⎞⎠⎞⎠ (19)

and

μmax(A) = max
θ∈[−π ,π ]λmax

⎛⎝⎛⎝IN −
P∑

p=1
A′

peipθ

⎞⎠
×

⎛⎝IN −
P∑

p=1
A′

pe−ipθ

⎞⎠⎞⎠ . (20)

Theorem 2. Suppose that Assumptions 1 and 3–6 hold, and
(r1, r2, r3) are known. If λ � M

√
log(N2P)/T and T �

log(N2P) + M2d min[log(NP), log(cNP/d)], then

‖ ̂ASHORR − A‖F ≤ C1τ
√

Sλ/α, (21)

and

T−1
T∑

t=1
‖( ̂ASHORR − A)(1)xt‖2

2 ≤ C2τ
2Sλ2/α, (22)

with probability at least 1 − C exp[−c log(N2P)] −
C exp{−cd min[log(NP), log(cNP/d)]}, where c, C, C1,
C2 > 0 are absolute constants, M = λmax(�ε)

(1 + μmax(A)/μmin(A)), d = ν−2r1r2r3, τ = δ−1r1r2r3∑3
i=1 ηi/

√ri with ηi = (
∑ri

j=1 σ 2
1 (A(i))/σ

2
j (A(i)))1/2,

S = s1s2s3 and α = λmin(�ε)/μmax(A).

Theorem 2 gives the nonasymptotic error upper bounds
under high-dimensional scaling. When the multilinear ranks
(r1, r2, r3) and lower threshold ν are fixed, (21) shows that
̂ASHORR is a consistent estimator if T � S log(N2P). In this

setting, the estimation and prediction error bounds in (21)
and (22) become Op(

√
S log(N2P)/T) and Op(S log(N2P)/T),

respectively.

Remark 9. Basu and Michailidis (2015) considered estima-
tion of stationary Gaussian VAR(P) models with sparse tran-
sition matrices such that ‖A‖0 = k. For the Lasso estimator
̂ALASSO = arg minT−1 ∑T

t=1 ‖yt − A(1)xt‖2
2 + λ‖A(1)‖1,

it was shown that ‖ ̂ALASSO − A‖F �
√

k log(N2P)/T and
T−1 ∑T

t=1 ‖( ̂ALASSO − A)(1)xt‖2
2 � k log(N2P)/T with high

probability, which are consistent with the regular error bounds
for the Lasso as N2P corresponds to the number of parameters
(e.g., Wang et al. 2015). In contrast, we assume that A admits
an HOSVD with sparse factor matrices U i, but A itself is not

necessarily sparse. When each U i is row-sparse with si nonzero
rows, for i = 1, 2, 3, it can be checked that A is a sparse tensor
with sparsity level S. In this case, the SHORR estimator has
the same error bounds as the Lasso estimator. However, in the
general case, even when A has a sparse HOSVD, A may not be
highly sparse, that is, k is larger than S, so ̂ASHORR may be more
efficient than ̂ALASSO.

4.3. ADMM Algorithm

There are two major challenges in developing an efficient algo-
rithm for the SHORR estimator. First, the core tensor G is
subject to the all-orthogonal constraint in (18) which cannot be
handled in a straightforward way. Second, the �1-regularization
in (17) and the orthogonality constraints in (18) are imposed
jointly on U i’s. The former is nonsmooth while the latter is non-
convex. To deal with these challenges, we adopt the alternating
direction method of multipliers (ADMM) algorithm (Boyd et al.
2011) to update U i’s and G alternatingly; see Algorithm 2.

First, to tackle the all-orthogonal constraint of G, our idea
is to separate it into three orthogonality constraints on the
matricizations G(i) for 1 ≤ i ≤ 3. This is to say that G(i)
can be decomposed as G(i) = DiV ′

i, where Di ∈ R
ri×ri is

a diagonal matrix, and V1 ∈ R
r2r3×r1 , V2 ∈ R

r1r3×r2 , and
V3 ∈ R

r1r2×r3 are orthonormal matrices with V ′
iV i = Iri .

Then, the augmented Lagrangian corresponding to the objective
function in (17) can be written as
L�(G, {U i}, {Di}, {V i}; {Ci})

= L(G, U1, U2, U3) + λ‖U3 ⊗ U2 ⊗ U1‖1

+ 2
3∑

i=1
�i〈(Ci)(i),G(i) − DiV ′

i〉 +
3∑

i=1
�i‖G(i) − DiV ′

i‖2
F,

where C1, C2,C3 ∈ R
r1×r2×r3 are the tensor-valued dual vari-

ables, and � = (�1, �2, �3)′ is the set of regularization param-
eters. This leads us to Algorithm 2. Note that all-orthogonal
constraint of G has been transferred to the matrices V i’s in
line 10, so no constraint is needed for updating G in line 7 of
Algorithm 2.

Second, we consider the update of U i’s. Since
L(G, U1, U2, U3) in (13) is a least squares loss function
with respect to each U i, the U i-update steps in lines 4–6 of
Algorithm 2 are �1-regularized least squares problems subject
to an orthogonality constraint, which can be written in the
general form:

min
B

{
n−1‖y − Xvec(B)‖2

2 + λ‖B‖1
}

, s.t. B′B = I. (23)

Since the �1-regularization and the orthogonality constraint for
B are difficult to handle jointly, we adopt an ADMM subroutine
to separate them into two steps. Specifically, we introduce the
dummy variable W as a surrogate for B and write problem (23)
into the equivalent form as follows:
min
B,W

{n−1‖y − Xvec(B)‖2
2 + λ‖W‖1}, s.t. B′B = I and B = W.

(24)
Then the corresponding augmented Lagrangian formulation is

min
B,W

{n−1‖y − Xvec(B)‖2
2 + λ‖W‖1 + 2κ〈M, B − W〉

+ κ‖B − W‖2
F}, (25)
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Algorithm 2 ADMM algorithm for SHORR estimator
1: Initialize: A(0)

2: HOSVD: A(0) ≈ G(0) ×1 U(0)
1 ×2 U(0)

2 ×3 U(0)
3 with multilinear ranks (r1, r2, r3).

3: repeat
4: U(k+1)

1 ← arg min
U ′

1U1=Ir1

{
L(G(k), U1, U(k)

2 , U(k)
3 ) + λ‖U1‖1‖U(k)

2 ‖1‖U(k)
3 ‖1

}
5: U(k+1)

2 ← arg min
U ′

2U2=Ir2

{
L(G(k), U(k+1)

1 , U2, U(k)
3 ) + λ‖U(k+1)

1 ‖1‖U2‖1‖U(k)
3 ‖1

}
6: U(k+1)

3 ← arg min
U ′

3U3=Ir3

{
L(G(k), U(k+1)

1 , U(k+1)
2 , U3) + λ‖U(k+1)

1 ‖1‖U(k+1)
2 ‖1‖U3‖1

}
7: G(k+1) ← arg min

{
L(G, U(k+1)

1 , U(k+1)
2 , U(k+1)

3 ) + ∑3
i=1 �i‖G(i) − D(k)

i V(k)′
i + (C

(k)
i )(i)‖2

F

}
8: for i ∈ {1, 2, 3} do
9: D(k+1)

i ← arg min
Di=diag(di)

‖G(k+1)
(i) − DiV(k)′

i + (C
(k)
i )(i)‖2

F

10: V(k+1)
i ← arg min

V ′
iV i=Iri

‖G(k+1)
(i) − D(k+1)

i V ′
i + (C

(k)
i )(i)‖2

F

11: (C
(k+1)
i )(i) ← (C

(k)
i )(i) + G

(k+1)
(i) − D(k+1)

i V(k+1)′
i

12: end for
13: A(k+1) ← G(k+1) ×1 U(k+1)

1 ×2 U(k+1)
2 ×3 U(k+1)

3
14: until convergence

Algorithm 3 ADMM subroutine for sparse and orthogonal regression
1: Initialize: B(0) = W(0), M(0) = 0
2: repeat
3: B(k+1) ← arg minB′B=I

{
n−1‖y − Xvec(B)‖2

2 + κ‖B − W(k) + M(k)‖2
F
}

4: W(k+1) ← arg minW
{
κ‖B(k+1) − W + M(k)‖2

F + λ‖W‖1
}

5: M(k+1) ← M(k) + B(k+1) − W(k+1)

6: until convergence

where M is the dual variable, and κ is a regularization parameter.
The ADMM subroutine for (25) is presented in Algorithm 3.
This yields solutions to the U i-update subproblems in Algo-
rithm 2.

Note that the B-update step in Algorithm 3 and the V i-
update step in line 10 of Algorithm 2 are least squares prob-
lems with an orthogonality constraint. Hence, they can be
solved efficiently by the splitting orthogonality constraint (SOC)
method (Lai and Osher 2014). The W-update step in Algo-
rithm 3 is an �1-regularized minimization, which can be solved
by the explicit soft-thresholding. The G- and Di-update steps
in lines 7 and 9 of Algorithm 2 are simple least squares
problems.

For general nonconvex problems, it is well known that
ADMM algorithms need not converge, and even if they do, they
need not converge to an optimal solution. A comprehensive
algorithmic convergence analysis for Algorithm 2 is challenging
due to both the nested ADMM subroutine, Algorithm 3, and its
interplay with the outer loop of Algorithm 2.

Wang, Yin, and Zeng (2019) gave a rigorous convergence
analysis of multi-block ADMMs for nonconvex nonsmooth
optimization with linear equality constraints. Their theory
would be applicable to Algorithm 3 if the B-update step in line
3 were exact. The extension to the inexact B-update step would
require a sophisticated analysis of the optimization error of the
SOC method. We do not delve into the development of the

convergence theory further in this article. Nonetheless, similarly
to the analysis in Uematsu et al. (2019), under some high-
level assumptions on L�(·), we can still obtain the following
convergence result for Algorithm 2.

Proposition 2. Let �L�(·) be the decrease in the
augmented Lagrangian L�(·) by a block update.
If

∑∞
k=1{[�L�(G(k))]1/2 + ∑3

i=1[�L�(U(k)
i )]1/2 +∑3

i=1[�L�(D(k)
i )]1/2 + ∑3

i=1[�L�(V(k)
i )]1/2} < ∞, then

the sequence generated by Algorithm 2 converges to a local
solution of problem (17).

Remark 10. The initial value A(0) for Algorithm 2 can be set
to the nuclear norm (NN) estimator ̂ANN for low-rank VAR
models (Negahban and Wainwright 2011), and it holds ‖ ̂ANN −
A‖F = Op(

√
r1NP/T); see also Section 5. Consequently, if one

searches the SHORR estimator within a neighborhood of ̂ANN
of radius O(

√
r1NP/T), then all iteratesA(k) will satisfy ‖A(k)−

A‖F ≤ ‖A(k) − ̂ANN‖F + ‖ ̂ANN − A‖F = Op(
√

r1NP/T).
Additionally, Theorem 2 implies ‖A(k) − ̂ASHORR‖F ≤ ‖A(k) −
A‖F + ‖ ̂ASHORR − A‖F = Op(

√
r1NP/T), where ̂ASHORR

is the global solution. A similar convex relaxation based ini-
tialization approach is used by Uematsu et al. (2019) for a
nonconvex optimization problem with jointly imposed sparsity
and orthogonality constraints. Moreover, since Algorithm 2
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and Proposition 2 do not guarantee the convergence to a
global solution, similarly to the random initialization method
in Remark 5, in practice we can try many randomized initial
values A(0) = ̂ANN + (NP/T)1/2T, where the entries of the
perturbation T ∈ R

N×N×P are drawn independently from
N(0, (N2P)−1) such that ‖T‖F = Op(1), and then select the
final solution as the one with the smallest value for the objective
function.

Remark 11. The above algorithms are presented under known
multilinear ranks and a fixed tuning parameter λ. In practice, to
save computational costs, we recommend a two-step procedure:
first select the ranks by the method to be introduced in Section 5,
and then fixing these rank, select the tuning parameter λ by a
fine grid search with information criterion such as the BIC or its
high-dimensional extensions. Although the degrees of freedom
in a sparse and orthogonal matrix are unclear, the total number
of nonzero elements in G, U1, U2, and U3 could be used as
proxies.

5. Rank Selection

The theoretical results we derived for MLR and SHORR estima-
tors hinge on correct multilinear ranks. This section introduces
a procedure for consistent rank selection.

Suppose that ̂A is a consistent initial estimator of A. We
propose the following ridge-type ratio estimator (Xia, Xu, and
Zhu 2015) to estimate the multilinear ranks,

r̂i = arg min1≤j≤pi−1
σj+1( ̂A(i)) + c
σj( ̂A(i)) + c

,

for 1 ≤ i ≤ 3, where p1 = p2 = N, p3 = P, and c is a parameter
that needs to be well chosen; see the assumption below. Here
we allow N, P and the multilinear ranks to diverge with T. For
i = 1, 2, 3, denote

ςi = 1
σri(A(i))

· max
1≤j<ri

σj(A(i))

σj+1(A(i))
.

Assumption 7. The parameter c > 0 is chosen such that (i) ‖ ̂A−
A‖F/c = op(1) and (ii) c max1≤i≤3 ςi = o(1).

Remark 12. In Assumption 7, Condition (i) states that the
estimation error is dominated by c, while Condition (ii) requires
that c grows much slower than ςi’s. Roughly speaking, Condi-
tion (ii) may be violated if the smallest nonzero singular value
of A(i) is too small, or if there is a big drop from σj(A(i)) to
σj+1(A(i)), for some 1 ≤ j < ri and 1 ≤ i ≤ 3. In either
case, it will be more difficult for the ridge-type ratio to select the
rank correctly. Note that if all the nonzero singular values are
bounded above and away from zero, then Condition (ii) simply
becomes c = o(1).

Similar to the minimal signal assumption for variable selec-
tion consistency of sparsity-inducing estimators, Assumption 7
is essential to the rank selection consistency:

Theorem 3. Under Assumption 7 and the conditions of Theo-
rem 2, P(̂r1 = r1, r̂2 = r2, r̂3 = r3) → 1 as T → ∞.

For the initial estimator, in this article, we use the nuclear
norm (NN) estimator for low-rank VAR models defined as

̂ANN = arg min
1
T

T∑
t=1

‖yt − A(1)xt‖2
2 + λ‖A(1)‖∗.

Note that the estimation error rate derived in Negahban and
Wainwright (2011) for VAR(1) models can be readily extended
to VAR(P) cases, which yields ‖ ̂ANN − A‖F = Op(

√
r1NP/T);

see also Remark 10. Then, the rank selection consistency in The-
orem 3 would hold for a relatively large range of c. In practice,
we recommend using c = √

NP log(T)/10T, which is shown
to perform satisfactorily in the first simulation experiment of
Section 6.

6. Simulation Experiments

6.1. Rank Selection Consistency

As the rank selection method proposed in Section 5 will be used
throughout all the following simulations and real data analysis
in the next section, we first conduct an experiment to evaluate
its consistency.

The data are generated from the proposed model in (5) with
dimensions (N, P) = (10, 5), multilinear ranks (r1, r2, r3) =
(3, 3, 3), and εt

iid∼ N(0, IN). To examine how the singular values
of A(i)’s impact the rank selection performance, we let G be a
diagonal cube with superdiagonal elements (G111,G222,G333) =
(2, 2, 2) (case a), (4, 3, 2) (case b), (1, 1, 1) (case c), or (2, 1, 0.5)

(case d). As a result, the three nonzero singular values of every
A(i) are exactly G111,G222, and G333. We generate the orthonor-
mal factor matrices U i’s as the first ri left singular vectors of
Gaussian random matrices while ensuring that the stationarity
condition in Assumption 1 holds. The parameter c for the
proposed ridge-type ratio estimator is set to

√
NP log(T)/10T.

Figure 2 presents the proportion of correct rank selection, that
is, the event {(̂r1, r̂2, r̂3) = (r1, r2, r3)}, across different sample
sizes T ∈ [50, 400] based on 1000 replications for each setting.
First, it can be seen that the proportion increases as T increases
and reaches almost one when T = 400 for all cases. Second, as
noted in Remark 12, the rank selection may be more difficult if
the smallest nonzero singular value σri(A(i)) is too small, or if
there is a big gap between any two consecutive nonzero singular
values. Thus, the better performance of cases a and b may be
due to their larger σri(A(i)) compared to the other two cases.
Moreover, it can be seen that cases a and c outperform cases b
and d, respectively, which may be explained by the equality of
the singular values G111,G222, and G333 in the former cases.

6.2. Performance of MLR and SHORR Estimators

We conduct two experiments to verify the theoretical properties
of the proposed MLR and SHORR estimators.

We first verify the asymptotic results in Section 3 for the
proposed MLR estimator ̂AMLR in comparison with the other
two low-dimensional estimators, ̂AOLS and ̂ARRR. The data are
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Figure 2. Proportion of correct rank selection when the three nonzero singular values of each A(i) are (2, 2, 2) (case a), (4, 3, 2) (case b), (1, 1, 1) (case c), or (2, 1, 0.5)

(case d).

generated from model (5) with (N, P) = (10, 5), εt
iid∼ N(0, IN),

r1 = r2 = 3, and r3 = 2, 3, or 4. We generate G by scaling a
randomly generated tensor with independent standard normal
entries such that min1≤i≤3 σri(G(i))) = 1, and generate U i’s by
the same method as in the previous experiment. There are 1000
replications for each setting. Throughout this and all following
experiments, the multilinear ranks are selected by the method
in Section 5. For each estimator, that is, ̂A = ̂AOLS, ̂ARRR, or
̂AMLR, we calculate the average bias across all elements of ̂A

and all replications. The square of this average bias is plotted
against T ∈ [2000, 4000] in the upper panels of Figure 3.
We also calculate the empirical and asymptotic variances for
each element of ̂A according to Theorem 1 and Corollary 2.
The averages of these empirical and asymptotic variances over
all elements of ̂A and all replications, denoted by EVar and
AVar, respectively, are plotted against T in the lower panels of
Figure 3. It can be seen that ̂AMLR has much smaller squared
bias, EVar and AVar than ̂AOLS and ̂ARRR. In addition, the
EVar generally matches the corresponding AVar well, with their
difference getting smaller as T increases, although the EVar
tends to overestimate the variances for all cases due to the large
(N, P) relative to the sample size. In sum, the asymptotic theory
of the proposed MLR estimator in Section 3 is confirmed by this
experiment.

The goal of the next experiment is to verify the nonasymp-
totic error bound of the proposed SHORR estimator. We con-
sider two settings of the multilinear ranks, (r1, r2, r3) = (2, 2, 2)

and (3, 3, 3), and the following four cases of (N, P, s1, s2, s3) for
model (5). For case a, we set (N, P) = (10, 5) and (s1, s2, s3) =
(3, 3, 2). Then, cases b–d are defined by changing one of the
settings in case a while keeping all others fixed. Specifically,
we set (s1, s2, s3) = (2, 2, 2) in case b, N = 20 in case c,
and P = 10 in case d. The core tensor G is generated in
the same way as in the previous experiment, and the sparse
orthonormal factor matrices U i’s are generated randomly by
the method given in Section F of the supplementary materials.

The regularization parameter λ is selected by the BIC. By Theo-
rem 2, fixing the multilinear ranks, it holds ‖ ̂ASHORR −A‖2

F =
Op(S log(N2P)/T), where S = s1s2s3. Thus, we denote γ =
S log(N2P)/T and set the sample size T such that γ = 0.05, 0.1,
0.15, 0.2, and 0.25. The mean squared error ‖ ̂ASHORR − A‖2

F,
averaged over 500 replications, is plotted against γ in Figure 4. It
is shown that the mean squared error generally increases linearly
in γ , and the four lines in each plot almost coincide. These
findings support the error bound in Theorem 2.

6.3. Comparison With Existing Estimation Methods

In the following experiment, we compare the performance
of the proposed MLR and SHORR estimators with those of
four existing ones for low-rank and/or sparse VAR models,
including (i) Lasso (Tibshirani 1996; Basu and Michailidis
2015); (ii) nuclear norm (NN, Negahban and Wainwright 2011);
(iii) regression with a sparse SVD (RSSVD, Chen, Chan, and
Stenseth 2012); and (iv) sparse and orthogonal factor regression
(SOFAR, Uematsu et al. 2019).

The data are generated from model (5) with (N, P) = (10, 5)

(case a) or (15, 8) (case b). For both cases, we let (r1, r2, r3) =
(3, 3, 3), (s1, s2, s3) = (3, 3, 2), and εt

iid∼ N(0, IN). For case a, G
and U i’s are generated by the same methods as in the previous
subsection, and in case b, zeros rows are added below the U i’s in
case a. In both cases, entry-wisely ‖A‖0 = 500. Hence, it is not
sparse in case a, but is sparse in case b due to the zero rows of
U i’s. Figure 5 plots the estimation error ‖ ̂A−A‖F averaged over
500 replications against T ∈ [500, 900] and T ∈ [800, 1200] for
the smaller and larger (N, P) cases, respectively. The error bars
representing ± one standard deviation are also displayed for the
proposed estimators, and suppressed for the others for clearer
presentation.

Under both smaller and larger (N, P), Figure 5 shows that
both ̂AMLR and ̂ASHORR significantly outperform the other
estimators which either consider the low-rankness along only
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Figure 3. Squared bias, empirical variance (EVar) and asymptotic variance (AVar) for ̂AOLS ̂ARRR, and ̂AMLR under various multilinear ranks.

Figure 4. Plots of the squared estimation error ‖ ̂ASHORR − A‖2
F against γ = S log(N2P)/T for four cases of (N, P, s1, s2, s3) under two settings of multilinear ranks.
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Figure 5. Plots of the estimation error ‖ ̂A − A‖F against T for six estimation methods under two settings of (N, P).

one direction or ignore it completely. Moreover, ̂ASHORR consis-
tently outperforms ̂AMLR as the former exploits the sparsity of
U i’s in addition to the low-rankness along three dimensions. It
is also interesting to note the different performances of ̂ALASSO
and ̂ANN in Figure 5. Since ̂ALASSO only exploits entry-wise
sparsity ofA, it has the worst performance whenA is not sparse,
as shown in the left panel. In contrast, ̂ANN only takes into
account the low-rankness, so it performs best among the four
existing estimators when A is not sparse, and yet becomes the
worst when A is sparse as is the case for the right panel. This
suggests that higher efficiency can be achieved by incorporating
both the low-rankness and sparsity, which is the key advantage
of the proposed ̂ASHORR.

6.4. Comparison With Factor Models

The final experiment aims to compare the proposed model
to the SFM and DFM discussed in Section 2.3. Note that the
SFM cannot be directly used for forecasting since it does not
impose an explicit model on the latent factors. However, for data
generated by both the proposed model and the DFM, the SFM
can be used to estimate the low-dimensional subspace where the
conditional mean E(yt|Ft−1) lies; see Remark 3.

We consider four data-generating processes for {yt} with
dimension N = 10. Two of them are generated by DFMs with
et

iid∼ N(0, 0.5IN):

• DFM-1: The DFM with r = 1, specified jointly by the SFM
yt = �ft +et and the autoregressive latent factor ft = Bft−1+
ξt , where � ∈ R

10×1 is a randomly generated vector with
unit Euclidean norm, B = 0.5, and ξt

iid∼ N(0, 1).
• DFM-2: The DFM with r = 3, specified jointly by the

SFM yt = �f t + et and the VAR(1) process for the latent
factors f t = Bf t−1 + ξ t , where � ∈ R

10×3 is a randomly

generated orthonormal matrix, B = diag(0.6, 0.5, 0.4), and
ξ t

iid∼ N(0, I3).

The other two are generated by the proposed model with P = 3
and εt

iid∼ N(0, IN):

• MLR-1: The proposed multilinear low-rank VAR model in
(5) with (r1, r2, r3) = (2, 2, 2). The core tensor G and factor
matrices U i’s are generated in the same way as the first
experiment in Section 6.2.

• MLR-2: Same as MLR-1 except for (r1, r2, r3) = (3, 3, 3).

We first compare the performance of the proposed model and
the SFM in terms of the estimation accuracy of the conditional
mean subspace. The estimation of the SFM is conducted by
the principal component method in Bai and Wang (2016). The
subspace estimation error can be measured by ‖̂�1̂�

′
1 −��′‖2

F
for DFM-1 and DFM-2, and ‖̂�1̂�

′
1 − U1U ′

1‖2
F for MLR-1 and

MLR-2, where ̂�1 = ̂�(̂�
′
̂�)−1/2 is the normalized version

of ̂� for the fitted SFM. The results based on 1000 replications
are displayed in Figure 6. It can be seen from the upper panels
of the figure that the conditional mean subspaces for DFM-1
and DFM-2 can be consistently estimated by fitting the corre-
sponding SFMs. However, as discussed in Section 2.3, for data
generated by the DFM, fitting the proposed model will lead
to model misspecification. This may explain why the subspace
estimation error for the MLR method is much larger and seems
to persist for large T in the upper panels of Figure 6. On the other
hand, when the data-generating process is MLR-1 or MLR-2, the
lower panels of Figure 6 show that both methods can estimate
the subspace consistently, although the MLR method is more
efficient. This agrees with our observation that the proposed
model admits an SFM representation.

We next compare the performance of the proposed model
and the DFM through the prediction error of the conditional
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Figure 6. Subspace estimation error for four data-generating processes based on two methods: fitting the proposed model by the MLR method, or fitting the static factor
model (SFM).

mean E(yT+1|FT). The DFM is estimated by a two-step
approach, where we first obtain the estimated factors ̂f t by
fitting an SFM, and then fit a (vector) autoregressive model
to {̂f t}. Figure 7 displays the prediction error ‖Ê(yT+1|FT) −
E(yT+1|FT)‖2 based on 1000 replications. Remarkably, as
shown in the upper panels, even if the data are generated from
the DFM-1 or DFM-2, the proposed model exhibits competitive
forecasting performance despite the model misspecfication. On
the other hand, as shown in the lower panels, when the data are
generated from MLR-1 or MLR-2, the forecasting performance
of the fitted DFM is rather poor. As discussed in Section 2.3, the
proposed model can accommodate different low-dimensional
patterns for the response yt and predictors yt−j’s, whereas the
DFM requires the subspaces of yt and yt−j’s to be identical.
When the DGP is the proposed model with distinct U1 and
U2, the DFM will forecast ̂U ′

1yt based on ̂U ′
1yt−j. However,

the true conditional expectation of yt is dependent on U ′
2yt−j,

and the latter could be different from, or even orthogonal to,
̂U ′

1yt−j. Consequently, when the response’s low-dimensional
subspace is applied to the predictors, the DFM may have no
predictive power at all. This explains why forecasting based on
the DFM leads to considerable prediction errors. The robust
forecasting performance of the proposed model reflects that its
low-dimensional structure can be much more flexible than that
of the DFM.

7. Real Data Analysis

This section applies the proposed estimation methods to jointly
model 40 quarterly macroeconomic sequences of the United
States from 1959 to 2007, with 194 observed values for each vari-
able (Koop 2013). All series are seasonally adjusted except for
financial variables, transformed to stationarity, and standard-
ized to zero mean and unit variance. These variables capture
many aspects of the economy, and can be classified into eight
categories: (i) GDP and its decomposition, (ii) National Associ-
ation of Purchasing Managers (NAPM) indices, (iii) industrial
production, (iv) housing, (v) money, credit, and interest rate, (vi)
employment, (vii) prices and wages, and (viii) others. The VAR
model has been widely applied to fit these series in empirical
econometric studies for structural analysis and forecasting; see
Stock and Watson (2009) and Koop (2013). Table 1 gives more
details about these macroeconomic variables.

We first apply the SHORR estimation to the entire dataset,
with the lag order fixed at P = 4 for the fitted VAR model as
suggested by Koop (2013). Since the number of variables N =
40 is much larger than the lag order P = 4, we do not perform
variable selection for the factor matrix related to lags; that is,
we replace ‖U3 ⊗ U2 ⊗ U1‖1 with ‖U2 ⊗ U1‖1 in the penalty
term. The multilinear ranks are selected by the ridge-type ratio
estimator, which results in (r1, r2, r3) = (4, 3, 2), and the tuning
parameter λ is selected by BIC.
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Figure 7. Prediction error for four data-generating processes based on two methods: fitting the proposed model by the MLR method, or fitting the dynamic factor model
(DFM).

Table 1. Forty quarterly macroeconomic variables belonging to eight categories.

Short name C T Description Short name C T Description

GDP251 1 5 Real GDP, quantity index (2000=100) FM2 5 6 Money stock: M2 (bil$)
GDP252 1 5 Real personal cons exp, quantity index FMRNBA 5 3 Depository inst reserves: nonborrowed (mil$)
GDP253 1 5 Real personal cons exp: durable goods FMRRA 5 6 Depository inst reserves: total (mil$)
GDP256 1 5 Real gross private domestic investment FSPIN 5 5 S&P’s common stock price index: industrials
GDP263 1 5 Real exports FYFF 5 2 Interest rate: federal funds (% per annum)
GDP264 1 5 Real imports FYGT10 5 2 Interest rate: US treasury const. mat., 10-yr
GDP265 1 5 Real govt cons expenditures & gross investment SEYGT10 5 1 Spread btwn 10-yr and 3-mth T-bill rates
GDP270 1 5 Real final sales to domestic purchasers CES002 6 5 Employees, nonfarm: total private
PMCP 2 1 NAPM commodity price index (%) LBMNU 6 5 Hrs of all persons: nonfarm business sector
PMDEL 2 1 NAPM vendor deliveries index (%) LBOUT 6 5 Output per hr: all persons, business sec
PMI 2 1 Purchasing managers’ index LHEL 6 2 Index of help-wanted ads in newspapers
PMNO 2 1 NAPM new orders index (%) LHUR 6 2 Unemp. rate: All workers, 16 and over (%)
PMNV 2 1 NAPM inventories index (%) CES275R 7 5 Real avg hrly earnings, nonfarm prod. workers
PMP 2 1 NAPM production index (%) CPIAUCSL 7 6 CPI all items
IPS10 3 5 Industrial production index: total GDP273 7 6 Personal consumption exp.: price index
UTL11 3 1 Capacity utilization: manufacturing (SIC) GDP276 7 6 Housing price index
HSFR 4 4 Housing starts: Total (thousands) PSCCOMR 7 5 Real spot market price index: all commodities
BUSLOANS 5 6 Comm. and industrial loans at all comm. Banks PWFSA 7 6 Producer price index: finished goods
CCINRV 5 6 Consumer credit outstanding: nonrevolving EXRUS 8 5 US effective exchange rate: index number
FM1 5 6 Money stock: M1 (bil$) HHSNTN 8 2 Univ of Mich index of consumer expectations

NOTE: Category code (C) represents: 1 = GDP and its decomposition, 2 = national association of purchasing managers (NAPM) indices, 3 = industrial production, 4 = housing,
5 = money, credit, interest rates, 6 = employment, 7 = prices and wages, 8 = others. Variables are seasonally adjusted except for those in category 5. All variables are
transformed to stationarity with the following transformation codes (T): 1 = no transformation, 2 = first difference, 3 = second difference, 4 = log, 5 = first difference of
logged variables, 6 = second difference of logged variables.

The �1 penalty yields sparse estimated factor matrices Û1 and
Û2, and the estimated coefficients are presented in Figure 8. The
factor loading provides insights into the dynamic relationship

among the 40 macroeconomic variables. The four response
factors, denoted by Ri for 1 ≤ i ≤ 4, contain nearly all of the
variables and encapsulate different aspects of the economy: R1
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Figure 8. Estimated coefficients in the response and predictor factor loading matrices.
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Table 2. Forecasting error for 40 quarterly macroeconomic sequences of the United States from 1959 to 2007.

Unregularized methods Regularized methods

Criterion OLS RRR DFM MLR SHORR LASSO NN RSSVD SOFAR

�2 norm 20.16 13.31 6.36 5.81 5.35 6.72 8.16 6.33 6.28
�∞ norm 8.32 4.55 2.85 2.56 2.44 3.06 3.36 3.02 3.02

NOTE: The best cases among (un)regularized methods are marked in bold.

is mostly related to investments, imports, industrial production
and employments; R2 includes personal consumption, housing
starts, and labor productivity; R3 includes manufacturing, hous-
ing starts, and treasury bill yield rates; and R4 includes NAPM
indices, housing starts, and price index. Each response factor
covers multiple categories of macroeconomic indices, and no
clear group structure can be observed. However, it is noteworthy
that only twelve variables are selected by the three predictor fac-
tors, and the sparse formulations of the predictor factors mainly
consist of variables from the first four categories, including real
GDP, private investment, NAPM indices, manufacturing and
housing starts. The above result leads to an interesting inter-
pretation: the activeness of production and investment serves
as the driving force of the whole economy and usually precedes
changes in other economic aspects such as the price indices,
financial indices, and labor markets.

We next evaluate the forecasting performance of ̂AMLR and
̂ASHORR in comparison with the competing estimators consid-

ered in Section 6. The following rolling forecasting procedure is
adopted: first, use the historical data with the endpoint rolling
from Q4-2000 to Q3-2007 to fit the models; and then, con-
duct one-step-ahead forecasts based on the fitted models. The
selected ranks and tuning parameters for ̂ASHORR are preserved
from the analysis of the entire dataset, that is, (r1, r2, r3) =
(4, 3, 2), and the selected ranks for MLR and RRR estimation
are also fixed accordingly.

The �2 and �∞ norms of the forecast errors for various
methods are displayed in Table 2. It can be seen that the pro-
posed MLR and SHORR estimators have much smaller forecast
errors than competing ones, including the DFM with r = 4
and the regularized and unregularized estimation methods for
the VAR model. This can be explained by the capability of the
proposed estimators to substantially reduce the dimensionality
along three directions simultaneously. The SHORR estimator
performs best among all estimators as it enforces sparsity of the
factor matrices and hence prevents overfitting most effectively.

8. Conclusion and Discussion

For a large VAR(P) model, its reduced-rank structure can be
defined in three different ways. The novelty of the proposed
approach lies in its ability to jointly enforce three different
reduced-rank structures. This is made possible by rearranging
the transition matrices of the VAR model into a tensor such that
the Tucker decomposition can be conducted. As a result, the
parameter space is restricted effectively along three directions,
and the capability of the classical VAR model for modeling large-
scale time series is substantially expanded.

Moreover, for the high-dimensional setup, this article further
proposes a sparsity-inducing estimator to improve the model

interpretability and estimation efficiency. An ADMM algorithm
is developed to tackle the computational challenges due to the
all-orthogonal constraints onG as well as the jointly imposed �1-
regularization and orthogonality constraints on U i’s. It is worth
noting that this article has a different focus than most work
on tensor regression: here we employ the tensor technique as a
novel approach to the dimension reduction problem in classical
VAR time series modeling.

This article may be extended in three possible directions.
First, the proposed estimators do not take into account the
possible correlation structure among components of εt , which
will reduce the estimation efficiency. Let �̂ε be an estimator
of �ε . As in Davis, Zang, and Zheng (2016), we may alterna-
tively consider the generalized least squares loss

∑T
t=1(yt −

A(1)xt)�̂
−1
ε (yt − A(1)xt) rather than

∑T
t=1 ‖yt − A(1)xt‖2

2.
However, the difficulty would be to find a good estimator �̂ε .
Second, the tensor technique potentially can be applied to many
variants of the VAR model, for example, those with a nonlinear
dynamic structure such as the threshold VAR model (Tsay 1998)
and the varying coefficient VAR model (Lütkepohl 2005). For
instance, consider the time-varying coefficient VAR model with
lag one, yt = Atyt−1 + εt . Similarly, the coefficient matrices
can be rearranged into a tensor A with A(1) = (A1, . . . , AT).
If A has multilinear low ranks (r1, r2, r3), then the number of
parameters will be r1r2r3+(N−r1)r1+(N−r2)r2+(T−r3)r3 �
NT. Moreover, a fourth-order tensor can be used to handle the
case of lag order P > 1. Lastly, the proposed model can be
generalized to a tensor autoregressive model for matrix-valued
or tensor-valued time series; see Wang, Liu, and Chen (2019) for
a related work.

Supplementary Materials

The online supplementary materials contain the proofs of the theoretical
results, details about the SFM representation in equation (9), and methods
for generating orthonormal matrices in simulation experiments.
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