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1. Introduction

Since the seminal work in Engle (1982) and Bollerslev (1986), the generalized autoregressive conditional heteroskedas-
ticity (GARCH) model has been widely used to capture the volatility clustering of financial data; see, e.g., Francq and
Zakoian (2010) for an overview. Financial data are well known to exhibit conditional asymmetric features, in the sense that
large negative returns tend to have more impact on future volatilities than large positive returns of the same magnitude.
This stylized fact, which is known as the leverage effect, was first documented by Black (1976), and leads to many variants
of the classical GARCH model (see, e.g., Higgins and Bera, 1992; Li and Li, 1996; Zhu et al,, 2017). Among the existing
asymmetric ARCH-type models, the first order asymmetric power-transformed GARCH (PGARCH) model proposed by Pan
et al. (2008) is often used in applications, and it is defined by

e =h"’n, he = w0+ a0l ) + a0 (=€ 1) + Bohe_1, (1.1)

where § is a given positive constant exponent, wg > 0, oy > 0, g— > 0, o > 0, and {5} is a sequence of independent
and identically distributed (i.i.d.) random variables. Here, the notations x™ = max(x, 0) and x~ = min(x, 0) are used.
Model (1.1) is motivated by the Box-Cox transformation, and it covers the classical GARCH model in Engle (1982) and
Bollerslev (1986), the absolute value GARCH in Taylor (1986), the GJR model in Glosten et al. (1993), the threshold GARCH
model in Rabemananjara and Zakoian (1993), the PARCH model in Hwang and Kim (2004), and many others.

Following Hormann (2008), model (1.1) is stationary if and only if the top Lyapunov exponent yy < 0, where

Yo = Elogag(ne), ao(x) = a0 (x7)’ + ato_(—x")" + fo. (12)
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By assuming 7 follows a standard normal distribution, the Gaussian quasi-maximum likelihood estimator (QMLE) of
model (1.1) was studied in Pan et al. (2008) and Hamadeh and Zakoian (2011) for 9 < 0, and Francq and Zakoian
(2013a) for yp > 0. Although the Gaussian QMLE has some desired asymptotic properties, it overlooks a crucial practical
feature that the quantile structure of the financial data actually varies in shape across the quantile levels (Engle and
Manganelli, 2004). Nowadays, the estimation of the conditional quantile becomes increasingly important for the financial
data, since it is related to the quantile-based risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES), which
are implemented worldwide in financial market regulation and banking supervision. However, only few attempts have
been made to study the quantile estimation for model (1.1), especially when 3, > 0.

This paper contributes to the literature in two aspects. First, we extend the idea of Zheng et al. (2018) to construct
a hybrid conditional quantile estimator of ¢; in model (1.1). To elaborate this idea, we let 6y = (wo, ®o, ®o—, Bo) and
0:0 = b:69, where t € (0, 1) is the given quantile level, b, = T(Q: ,), Q;,, is the rth quantile of »;, and T(x) = |x|?sgn(x)
is a given monotonic transformation function. Then, the rth quantile of the transformed data y; = T(¢;) conditional on
Fi-1 is

Qe(VelFio1) = belwo + @i (6 1) + ato-(—€, 1) + Bohe—1) = 02, (13)
and the tth quantile of the original data ¢, conditional on F;_; is
Q€| Fir) = T Qe el Fi-1)). (1.4)

where z. = (1, (¢, ,), (—€, ,)°, he—1), F¢ is the o-field generated by {e;, €1, ...}, and T~'(x) = |x|"/°sgn(x). The result

(1.3) implies that Q;(y¢|F;_1) is linear in terms of z;, and hence if z; is observable, 6;¢ can be easily estimated by the
regression quantile estimation. With this quantile estimator of 6,4, then Q.(y;|F;—1) can be estimated via (1.3), leading
to an estimator of Q.(&;|F;_1) according to (1.4). However, z; contains an unobservable h;_1, which has a recursive form,
adding difficulty to the theoretical derivation and numerical optimization. To circumvent this difficulty, we replace h;_;
by its initial estimator to calculate the quantile estimator of 6.¢; see also Xiao and Koenker (2009), So and Chung (2015)
and Zheng et al. (2018). Indeed, Zheng et al. (2018) estimated h,_; based on the Gaussian QMLE, which needs En} < oo
in theory. To relieve the moment condition of 7, we estimate h,_; by using the generalized QMLE (GQMLE) in Francq
and Zakoian (2013b), and our theory only requires E|n:|*" < oo, where r is a user-chosen positive number, indicating the
estimation method used. Note that there is a vast literature on the estimation of conditional quantile for financial data,
and two leading examples are the filtered historical simulation (FHS) method (Barone-Adesi et al., 1998; Barone-Adesi
and Giannopoulos, 2001; Kuester et al., 2006) and the conditional auto-regressive VaR-method called “CAViaR” (Engle
and Manganelli, 2004) . As argued in Zheng et al. (2018), the hybrid conditional quantile estimation method combines the
advantages of both FHS and CAViaR approaches, since it can exploit the ARCH-type structure in both the global estimation
of the volatility and the local estimation of quantiles.

Second, we study the asymptotic properties of the quantile estimator of 6;9. Denote 6,9 = (wqo,?,,), where
w0 = brwg and 99 = b (x4, @o—, Bo). Under some regularity conditions, the quantile estimator of ;¢ is shown to
be asymptotically normal for either y < 0 or yp > 0, while the quantile estimator of w,q is asymptotically normal only
for yy < 0. Our findings are similar to those in Jensen and Rahbek (2004a,b) and Francq and Zakoian (2012, 2013a), and
our asymptotic results for yy > 0 are the first try of the quantile estimation for non-stationary ARCH-type models in
the literature. Compared to the Gaussian QMLE in Francq and Zakoian (2013a), our quantile estimator takes the quantile
structure of ¢, into account through the transformation function T(-), and it could be a more appealing tool to investigate
the quantile-based measures such as VaR and ES (Engle and Manganelli, 2004; Francq and Zakoian, 2015). Moreover, our
quantile estimator only requires E|n:|?" < oo for its asymptotics, and hence it is more appropriate to study the heavy-
tailed financial data than the Gaussian QMLE, which requires E|n:|* < oo for its asymptotic normality. As a by-product,
new tests for strict stationarity and asymmetry of model (1.1) are derived from our estimation procedure.

The remainder of this paper is organized as follows. Section 2 introduces our hybrid conditional quantile estimation
procedure. Section 3 studies the asymptotic properties of our proposed quantile estimator. The strict stationarity tests and
the asymmetry tests are provided in Section 4. Simulation results are reported in Section 5. Applications are presented in
Section 6. The conclusions are offered in Section 7. The proofs are given in Appendix.

Throughout the paper, | - | denotes the absolute value, || - || denotes the vector ,-norm, || - ||, denotes L”-norm for a
random variable, A’ is the transpose of matrix A, —, denotes the convergence in probability, —, denotes the convergence
in distribution, 0,(1) (Op(1)) denotes a sequence of random numbers converging to zero (bounded) in probability, C is a
generic constant, R = (—o00, 0), R+ = (0, 00), I(-) is the indicator function, and sgn(a) = I(a > 0) — I(a < 0) is the sign
of any a € R.

2. The hybrid conditional quantile estimation

Let 0 = (w, a4, @_, B) € O be the unknown parameter vector of model (1.1), and 6y € ® be its true value, where ©®
is the parameter space, and it is a compact subset of Ri. Moreover, let 6, = b0 € ®, and 6,¢ be its true value, where
O, = {6; : 0 € O}. Assume that {eq, €3, ..., €,} are observations generated from model (1.1). By (1.3), the parametric
tth quantile of the transformed data y; is

QWelFe1) = be(w + (e, +a (=€) + he1) = ;2. (2.1)
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If {h;_1} are observable, we are able to estimate Q.(y:|F;—1) by the linear quantile regression. However, {h;_{} are not
observable, and we shall replace them by some initial estimates. To accomplish this, we define h.(6) recursively by

he(0) =+ Ol+(€t+_1)8 + Ol—(—ft__ﬂs + Bhe_1(6).
Then, h; = h¢(6p). In practice, we calculate h]/ 8( 0)

0l(0)=w+ai(e ) +a(—€¢ ) + pol,(6)

by o¢(6), where

with given initial values g9 and 03(9).

Based on (1.4) and (2.1), our hybrid conditional quantile estimation procedure for Q.(e;|F;—1) has the following three
steps.

Step 1 (Estimation of the global model structure). Using the generalized quasi-maximum likelihood estimator (GQMLE)
in Francq and Zakoian (2013b) to estimate the parameter in model (1.1),

~ N ~, lec]"
Onr = (On,r, ¥, ) = argmin — lo 09 +
" ( o ) Gge() [21: g ‘ )] (Ttr(g)
_l n
= argmin — I +(8), 2.2
gmin > 1k(6) (22)

where r is a user-chosen positive number. Based on én,r, compute the initial estimates of {h;} as {af(én,r)}.
Step 2 (Quantlle regressmn at a specific level). Perform the weighted linear quantile regression of y, on z; =
(1, (6" 1), (=€, 1), 00 ,(Onr)) at quantile level T,

Pt yt - 9,2[)
0 =(w ,ﬁr Y = argmin — _
™n,r ( Tn,r n,r 9,geor Z o (Qnr)
Ve — 9/2t
=ar mmf | ————
HngOr Zp < (Qn r))
= argmin — l (2.3)
0 €O Z tp

where p.(x) = x[t — I(x < 0)]. Based on 9,,1 r» estimate the rth conditional quantile of y; by Q,(ytl]»} 1) = Qm .

Step 3 (Transforming back to ;). Estimate the rth conditional quantile of the original observation ¢; by Qr(efl]-} 1) =
(6], . 2)-

For the GQMLE én,r in Step 1, Francq and Zakoian (2013b) established its asymptotic normality under some regularity
conditions. The non-negative user-chosen number r involved in én,r indicates the estimation method used. Particularly,
whenr = 2, én,r reduces to the Gaussian QMLE; and whenr = 1, én,r reduces to the Laplacian QMLE. So far, how to choose

n “optimal” r (under certain criterion) is unclear, and simulation studies in Section 5 suggest that we could choose a
small (or large) value of r when 7, is heavy-tailed (or light-tailed).

For the quantile estimator 6., - in Step 2, Zheng et al. (2018) studied its asymptotics for a special case that § = 2 and
o+ = ag— with Y < 0 (i.e,, the stationary classical GARCH model) and r = 2 (i.e., the Gaussian QMLE). In the present
paper, we will study the asymptotic properties of émr for the general case.

3. Asymptotic properties of the hybrid quantile estimator

In this section, we study the asymptotic properties of the hybrid conditional quantile estimator. First, we give some
technical assumptions as follows:

Assumption 3.1. (i) 6 is an interior point of ®; (ii) the random variable n; cannot concentrate on at most two values,
the positive line or the negative line, and P(|n;| = 1) < 1; (iii) E|n¢|" = 1.

Assumption 3.2. The density f(-) of T(n;) is positive and differentiable almost everywhere on R.

Assumption 3.3. When t tends to infinity,

-1 ]
1+ 00(771)~--Go(77i)} 20(*> .
2 7
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Assumptions 3.1(i)-(ii) used by Francq and Zakoian (2013a) are usually assumed for ARCH-type models. Assump-
tion 3.1(iii) is the identification condition for the GQMLE; see Francq and Zakoian (2013b). If r = §, we have
E(le|’|Fi—1) = heElnel’ = hy

by (1.1) and Assumption 3.1(iii), meaning that we can directly predict the §th moment of |e;| by h;. If r # §, the 6th
moment of |¢| has to be predicted by h.E|n;|® in this general case.

Assumption 3.2 is standard for quantile estimation. Assumption 3.3 is needed only for 3, = 0, and it is used to prove
that when yy = 0,

1 — 1
—Z——)O asn — oo
\/Fz[:lht

in L' (see Francq and Zakoian (2012, 2013a)).
Let i1, = {E[|n¢|"I(ne < Q:.,)]1 — 7}/ and «z; = (E[n¢|*" — 1)/r%. Define the 4 x 4 matrices:

J=E |:] oh¢(6o) 8h[(90):| ! O—E I:Z[Z[,] ,

200 o 2
_E z; 3hy(6o) , F—E Bozi dhi—1(6o) ’
R o0 R o0

and the 3 x 3 matrices:
Jo = Elde(90)de(90)], 29 = E[&&,],
di_1(%o)
Hy = E [&d(90)] . Iy =E [ﬂo%‘rtl(())] ,

do(Me-1)
where d;(1%) is defined in (A.1), and

g = ( ) (=n,) 1 )
" \aome1)” ao(ne1) ao(ne-1))

Theorem 3.1. Suppose that Assumptions 3.1-3.2 hold and E|n;|*" < oo.
(i) [Stationary case] When yy < 0, and 8 < 1 forall 6 € ©,
V(Benr — 0z0) >4 N(O, ) as n— oo, (3.1)
where
5 =0 [r T K ) 82b21“j‘11”] o
= 2 .
' f3(be) f(bz) e
(ii) [Explosive case] When yy > 0, and P(n, = 0) =0,
V(Denr = B20) —>a N(O, Ty ;) as n— oo, (32)
where
=7 K1r8be —1pp —1 202~ =17 | -1
Sor=2" 5 5 -+ (Ivy 'Hy + HoJy ' Ty) + k2, 8°b7 Ty )y ' Ty | 257
f2(b) f(be)

(iii) [At the boundary of the stationarity region] When yo =0, P(n: =0)=0, 8 < || l/ao(m)||;l forany 6 € ® and some
p > 1, and Assumption 3.3 is satisfied, then (3.2) holds.
Remark 1. Similar to the Gaussian QMLE in Jensen and Rahbek (2004a,b) and Francq and Zakoian (2012, 2013a), f}m,r is
always asymptotically normal regardless of the sign of y;, and @, is shown to be asymptotically normal only for 3 < 0.

Our results in Theorem 3.1 are also related to those in Zheng et al. (2018), but with three major differences. First, the
results in Theorem 1 of Zheng et al. (2018) are nested by ours with yy < 0, oo+ = ap— and § = r = 2. Second, the results
in Zheng et al. (2018) need the assumption E|n;|* < oo, while our results hold under a weaker assumption E|n;|>" < oo,
which is applicable to the heavy-tailed 7. Third, the results of Zheng et al. (2018) are only for the stationary GARCH
model, but our results cover both stationary and non-stationary asymmetric PGARCH models, leading to a much larger
applicability scope than theirs.

Remark 2. To prove the result in (iii), a technical condition 8 < ||1/a0(7][)||;1 is needed, and it poses an additional
restriction on the parameter S. Clearly, the boundary point ||1/ag(n;)|| > 1'is related to the constant p, the distribution of
ne, and the value of (8, ooy, ®o—, Bo)- Table 1 reports the values of ||1/a0(77t)||;1 for several choices of p, n;, and §, where
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Table 1
The values of [|1/ao(n;)ll," when y, = 0 with By = 0.9.
Nt p oo—
0.01 0.04 0.07 0.10 0.13 0.16 0.19 0.22 0.25
Panel A: § =2
N(0, 1) 2 0.97366 0.98019 0.98380 0.98524 0.98497 0.98325 0.98023 0.97599 0.97066
4 0.95886 0.96792 0.97274 0.97465 0.97429 0.97201 0.96797 0.96215 0.95448
6 0.94949 0.95953 0.96467 0.96667 0.96630 0.96391 0.95958 0.95320 0.94441
ts 2 0.96867 0.97439 0.97750 0.97894 0.97913 0.97831 0.97662 0.97410 0.97075
4 0.95403 0.96143 0.96531 0.96708 0.96732 0.96631 0.96421 0.96106 0.95677
6 0.94528 0.95323 0.95727 0.95909 0.95934 0.95831 0.95614 0.95284 0.94826
) 2 0.96093 0.96276 0.95718 0.96282 0.97221 0.98027 0.98736 0.99368 0.99940
4 0.94825 0.95038 0.94380 0.94596 0.95183 0.95670 0.96087 0.96450 0.96772
6 0.94116 0.94335 0.93651 0.93704 0.94125 0.94468 0.94756 0.95003 0.95219
Panel B: § =1
N(0, 1) 2 0.98360 0.98868 0.99209 0.99401 0.99459 0.99397 0.99224 0.98952 0.98587
4 0.97119 0.97972 0.98545 0.98867 0.98964 0.98859 0.98570 0.98113 0.97501
6 0.96174 0.97257 0.97982 0.98389 0.98512 0.98379 0.98013 0.97435 0.96659
ts 2 0.98177 0.98659 0.98993 0.99198 0.99290 0.99279 0.99176 0.98987 0.98720
4 0.96894 0.97679 0.98217 0.98547 0.98694 0.98676 0.98511 0.98208 0.97776
6 0.95955 0.96931 0.97597 0.98002 0.98182 0.98161 0.97958 0.97585 0.97052
ty 2 0.96174 0.97257 0.97982 0.98389 0.98512 0.98379 0.98013 0.97435 0.96659
4 0.96629 0.97588 0.97941 0.97865 0.97438 0.96686 0.96342 0.96892 0.97385
6 0.95788 0.96930 0.97347 0.97258 0.96753 0.95856 0.95315 0.95703 0.96043

the value of Sy is fixed to be 0.9, the value of «(_ is set to be 0.01,0.04, ..., 0.25, and the value of o is uniquely
determined by the condition yy = 0. From this table, we can find that (i) the value of By always lies in the region
{B:8< ||1/a0(n[)||;1}; (ii) the values of || 1/a0(m)||51 do not vary too much across «g_ or the distribution of 7, although
they become slightly smaller as the values of p become larger. In sum, based on our calculations, the technical condition
B < 1/a0(m)||;1 seems mild, and it should not hinder the practical application of our proposed estimation.

Remark 3. Our results in Theorem 3.1 are derived for a known exponent §. When § is unknown in general, we can include
§ as an additional unknown parameter in our first estimation procedure, and the asymptotics of the resulting GQMLE can
be established with some minor modifications (see also Section 6 in Francq and Zakoian (2013a)). However, since the
unknown exponent § is involved in the transformation function T(-), how to derive the asymptotics of the corresponding
quantile estimator in the second step estimation procedure is challenging at this stage, and we leave this interesting topic
for the future study.

Let Zt » = (¢, 1), (—€, )%, 0} (60)). By (A.21), (A.23) and Lemma A.3, we have

. 1 &
V(O — 6:0) = 27 7 > Uu+ V) |+ 0p(1)
- t=1

1 n
=027 — ) e | +o0,(1), (3.3)
. 1 &
VBenr = De0) = 251 | —= D (Uuy.c + Vovg o) | + 0p(1)
VS
S
=2, | —= ) ess|+0,(1) (3.4)
2 _\/ﬁg t P
where U = 1/f(b,) and
b8 Z 1 he(6o)
V=—TrI ]s = VY- — & ) =[1- N
" J ur =y (ﬂt Qi,r;) 1e(6o) ve = 7¢| ]ht Y
b6  _ Zty 1 90(6p)
Vy = —T, 1, =Y —Q; 2 s =[1— s P S 04
¥ " oly s Up e =Y (Ut Q.n) 0[5(00) vy = [ |77t|]h[ 90

with ¥ (x) =t — I(x < 0).
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Based on én,r, we can calculate £, f]r, Ur t, E,J, ﬁ,]r, and vr , which are the sample counterparts of §2, U, u;, b;, I,
J, and vy, respectively.! Since e, is a martingale difference sequence, by (3.3) we can estimate X, by

. NN [ R
L= |:n Zervfer,t] [oMis
=1

where &, = Uit + V; ¥, with V, = (b, ,8/r)[J;". Under the conditions of Theorem 3.1(i), we can show that %, is a
consistent estimator of X, for yy < 0.
Partition ﬁr,t = (ﬂwr,ta a:9r,[),v lN)r,[ = (f)wr,ts ﬁ;yr,[),' and

2- — g‘ww,r g‘wﬁ,r Q _ S?mw,r S?an?,r 1‘; — If‘wwﬁr 1?@19,r j — ,wa,r zwﬁj
' e Zoor] T 5. 990] I e Jowr Joor

Then, fZM,r, Upr t fﬁﬁ,r,jgﬁ,r and vy, are the sample counterparts of §2y, uy ¢, I'y, J9 and vy ¢, respectively. Since ey ; is
a martingale difference sequence, by (3.4) we can estimate Xy , by

n
Sor =50, |~ Y onitl,, | 25
2r = S4or | Cor.tCyr¢ | S499.rs
t=1

where &y, = U,ﬂ,yr,t + Vﬁ,rﬁm,[ with \7191 = (BT,,S/r)ﬁw,rj;,,lyr. Under the conditions of Theorem 3.1(ii)-(iii), we can
show that iﬂ,r = Xy + 0p(1) and Soor = 20,, + 0,(1) for yp > 0, which imply we can estimate X , by Ew,r for
either yp < 0 or 3 > 0.

4. Strict stationarity and asymmetry tests
4.1. Testing for strict stationarity

Since the stationarity of model (1.1) is determined by the sign of yy, it is interesting to consider the strict stationarity
testing problems as follows:
Hp : o < 0 against H; : 3 > 0, (4.1)
and
Hp : yo > 0 against Hy : y < 0. (4.2)

In Francq and Zakoian (2013a), a strict stationarity test based on the Gaussian QMLE is proposed. In this subsection, similar
to Francq and Zakoian (2013a), we construct a strict stationarity test based on the GQMLE.
For any 0 € O, let ,(0) = €;/0¢(0) and

1 n
y(®) =~ ; loglar (0, (0)) + a—(—n; (0)) + B1.

Then, we can estimate yy by Y, = yn(én’r). The following result shows the asymptotic distribution of j,, in both
stationary and nonstationary cases.

Corollary 4.1. Let u; = log(ao(n:)) — Yo, 02 = E(u?) and a = (0, E£]). Then, under the conditions of Theorem 3.1,

V(Fnr — v0) >4 N(0,0%) as n— oo, (4.3)
where
of = { oi + 8% (@) la— (1 - E[F551%), as 0 <0,
0

oy, as yo > 0.

The proof of Corollary 4.1 is omitted, since it is similar to the one in Francq and Zakoian (2013a) except for some minor
modifications. Let 7;, = n(6,,). Under the conditions of Corollary 4.1, Guz can be consistently estimated by &li - Where
6., is the sample variance of {log[an r(7;,)° + @n—r(—7,)° + Bn.r1}. Then, the test statistic

fr = \/E)N/n,r/&u,r

1 gor U., we follow Silverman (1986) to estimate f(xo) by the Gaussian kernel density estimator f(xo) = ZLII(h(T(f;t_,)—xg)/n with

Kn(x) = 1/(v/2h)exp{—x2/(2h?)} and the rule-of-thumb bandwidth h = 0.9n~"/> min(s, R/1.34), where 7;, = €;/0t(6,,), and s and R are the
sample standard deviation and interquartile range of the transformed residuals {T(7 )}, respectively.
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Table 2

The values of the pair («+, o) Wwhen op_ = 0.15 and By = 0.9.

§=2 5§=1

ne ~ N(0, 1) ne ~ sts ne ~ St3 n: ~ N(0, 1) ne ~ sts ne ~ st3
Qo+ Yo Qo+ Yo Ao+ Yo Ao+ Yo o+ Yo Qo+ Yo
0.05 —0.0104 0.05 —0.0152 0.05 —0.0226  0.05 —0.0233 0.05 —0.0261 0.05 —0.0286
0.07224697 0.0000 0.09206513  0.0000 0.1516561  0.0000 0.1083685 0.0000 0.1332366  0.0000 0.1830638 0.0000
0.2 0.0517 0.2 0.0330 0.2 0.0091 0.2 0.0337 0.2 0.0192 0.2 0.0034

asymptotically converges to N(0, 1) when yy = 0. For the testing problem (4.1) [or (4.2)], this leads us to consider the
critical region

=T >0 '(1-a) [or M = (f, < & ()] (4.4)

at the asymptotic significance level «.
4.2. Testing for asymmetry

Testing for the existence of asymmetry (or leverage) effect is important in many financial applications. For model (1.1),
this asymmetry testing problem is of the form

Hy : ooy = Op— against Hyp: oo+ 75 Qp—. (45)

In this subsection, we propose two tests for the hypotheses in (4.5). Let 65, = ,/e/)?;ﬁ’,e and G5, = \/€'Zyy e with
e=(1,—1,0), where fJM,r defined before is a consistent estimator of the asymptotic variance of ﬁrn,r, and

cx
21919,r_ ]Oz?r|: § vﬁrfv19rt:|-lm7r

By Lemmas A.1-A.4 and the similar argument as for Theorem 3.2 in Francq and Zakoian (2013a), we can show that 2;17,r
is a consistent estimator of the asymptotic variance of 17},”. With 65, and 65, our test statistics for asymmetry are defined
by

\/ﬁ(&n+,r - &nf,r) o(r) \/ﬁ(&rn+,r - &rn—,r)

(t) _
— and S = -
OS os.r

§1,r =

,T

Note that §1,r is based on the GQMLE, and it aims to examine the asymmetric effect in model (1.1) globally, while 351,)
does this locally at a specific quantile level T by using the quantile estimator. Under the conditions of Theorem 3.1, it
is straightforward to see that both S; , and Sé’r) asymptotically converge to N(0, 1) under Hy in (4.5). Hence, the critical

region based on §1,r [or §§Tr)] is
C = (IS4l > @' (1 = a/2)} [or, €5 = {I5)] > &7 '(1 — 2/2)}] (4.6)

for the testing problem (4.5), and it has the asymptotic significance level . Since &y r, Grnt.r, o, or G5, has the unified

asymptotics for both yy < 0 and yy > 0, the tests 51 + and Sgrr can be used in both cases. This is also the situation for the
asymmetry test in Francq and Zakoian (2013a) We shall emphasize that unlike the Gaussian QMLE-based tests in Francq
and Zakoian (2013a), our tests Tr, Sl + and S2 only require E|;|*" < oo, and they thus are valid for the very heavy-tailed ;.

5. Simulation studies
5.1. Simulation studies for the quantile estimators

In this section, we assess the finite-sample performance of ém,r. We generate 1000 replications from the following
model

e =h""n. he=0.1+a0,(g ) +0.15(—¢_,) + 0.9k 1, (5.1)

where 7, is taken as N(0O, 1), the standardized Student’s t5 (sts) or the standardized Student’s t3 (st3) such that E nf =1.
Here, we fix wg = 0.1, ag— = 0.15 and By = 0.9, and choose «p as in Table 2, where the values of «y+ correspond to
the cases of 9 > 0, yp = 0, and Y, < 0, respectively. For the power index § (or the estimation indicator r), we choose it
to be 2 or 1. For the quantile level 7, we set it to be 0.05 or 0.1. Since each GQMLE has a different identification condition,



G. Wang, K. Zhu, G. Li et al. / Journal of Econometrics 227 (2022) 264-284 271

ém,r has to be re-scaled for 6,9 in model (5.1), and it is defined as

A _ _ _ s/ ,
Ornr = (a)fn,r, Oeny.rs Qe rs (Elnel") /rﬂrn,r) ,

where 0, = (Oenrs Fengors Tenrs Bm,r)’ is the hybrid quantile estimator calculated from the data sample, and the true
value of (E|n;|")*/" is used.

_ Tables 3 and 4 report the bias, the empirical standard deviation (ESD) and the asymptotic standard deviation (ASD) of
O.n.r for the cases of § = 2 and § = 1, respectively. In this section, since the results for n, ~ st3 are similar, they are not
reported here for saving space. From Tables 3 and 4, our findings are as follows:

(al) The biases of all parameters become small as the sample size n increases, except when y, > 0, the estimators
of w have relatively large biases as expected. For each distribution of 7;, the biases of ém,r with r = 1 (or T = 0.1) are
generally smaller than those of émr with r = 2 (or t = 0.05). For each estimator, its biases (in absolute value) in the
case of n; ~ sts tend to be smaller than those in the case of n, ~ N(0, 1).

(a2) The ESDs and ASDs of the parameter % are close in all cases, while the ESDs and ASDs of the parameter w have a
relatively large disparity as expected. As the sample size n increases, the ESDs and ASDs of all parameters become small.
For each distribution of 7, the ASDs of 6;,, seem robust to the choices of r, and they become large as the value of ©
decreases. For each estimator, its ASDs in the case of 1; ~ sts are generally larger than those in the case of n, ~ N(0, 1),
except for § =2 and t = 0.1.

Note that all of the aforementioned findings are invariant, regardless of the power index § and the sign of yp. In
summary, our quantile estimator 6;, , has a good finite sample performance, which is robust to the choice of r. Particularly,
its performance tends to be even better, when 7; is more light-tailed or the value of t is larger.

5.2. Simulation studies for the tests

In this subsection, we first assess the performance of the strict stationarity test T,. We generate 1000 replications from
model (5.1) with the same settings for § and #;, except that the values of oy are chosen as in Table 5. We apply T; with
r =2 and 1 to both testing problems (4.1) and (4.2) at the significance level 5%, and obtain the following findings:

(b1) The size of T, is controlled by the level of 5% in general, though there is some over-sized risk for the testing
problem (4.2) when the sample size n is not large enough. This is also observed in Francq and Zakoian (2012, 2013a)).

(b2) The power of T: is satisfactory, and it increases with the sample size n. Also, T; is more powerful when the tail of
n; is thinner. But the choice of r has a negligible effect on the power of T.. This may be because the asymptotic variance
of 7, in (4.3) does not depend on r.

Next, we assess the performance of asymmetry tests $; , and S(T As before, we generate 1000 replications from model
(5.1) with the same settings for § and 7, except that the values of oo+ are chosen to be {0.01,0.03,...,0.27,0.29}. We
apply Sl + and 52 ; (w1th v = 0.05 and 0.1) to the testing problem (4.5) at the significance level 5%. Flgs 1 and 2 plot the
power of Sl,r and S;r for r = 1 with n; ~ N(0, 1) and sts, respectively. Since the results for r = 2 are similar, we do not
show them here for saving the space. Our findings are as follows:

(c1) All three tests have precise sizes even when n is not large. .

(c2) The power of all three tests increases when the value of ¢p; moves away from 0.15, and the global test S; , is more
powerful than the two local tests §(T) Both local tests §(T) are more powerful for § = 1 than for § = 2. When n, ~ N(0, 1),

S( with T = 0.05 is more powerful than S(’) with T = 0.1, while when 7, ~ sts, the opposite conclusion is obtained.
Overall all our proposed tests have a good performance especially for large n.

6. Applications
6.1. Stationary data

In this subsection, we re-analyze the daily log returns of two stock market indexes: the S&P 500 index and the Dow
30 index in Zheng et al. (2018). The data are observed on a daily basis from January 2, 2008 to June 30, 2016, with a
sample size n = 2139. Zheng et al. (2018) studied these two datasets by using the classical GARCH(1,1) model, whose
conditional quantile was estimated by the hybrid quantile estimator with the Gaussian QMLE as its first step estimator.
They found that the resulting method can produce better interval forecast than many existing ones. Since their GARCH(1,1)
model overlooks the often observed asymmetry effect in financial data, it is of interest to re-fit these two sequences by
model (1.1).

Based on model (1 1) with § = 2 and 1, Table 6 gives the estimation results for both sequences. Here, we use the
GQMLE On  with r = 2 and 1 in the first step estimation, and we consider the hybrid quantile estimators Qm + with
v = 0.05 and 0.1 in the second step estimation. From this table, the estimates of ¢ are always much smaller than those
of ap— in magnitude, indicating that there is a strong asymmetric effect for both sequences. To look for more evidence,
we apply the asymmetry tests S; , and Sé’r) to both sequences, and their corresponding p-values given in Table 6 confirm

the asymmetric phenomenon. We also consider the strict stationarity test T, for the testing problem (4.2) in Table 6, and
its p-values show strong evidence that both time series are strictly stationary.



Table 3 R
Summary for 6, (x10) when § = 2.
ne n Y0 <0 ¥o=0 vo >0
r=2 r=1 r=2 r=1 r=2 r=1
3} ay a_ B 3} ay a_ B 3} ay o B 2} ay o B 3} oy o B 3} oy a_ B
Panel A: 7 = 0.05
N(0,1) 1000 Bias —1.36 —0.68 —0.36 0.62 —129 —-055 —028 040 —-1.17 —-051 —-037 036 —0.72 —-0.52 —-0.34 048 —174 —-041 -0.24 0.22 —093 —-0.16 —-0.32 0.16
ESD 5.63 1.81 2.72 233 6.20 1.82 2.88 249 545 1.99 2.74 223 5.66 2.11 2.88 242 6.33 3.14 2.65 235 6.10 3.13 2.80 245
ASD 3.99 2.11 2.78 243 430 2.14 2.80 254 3.88 2.25 2.75 234 426 2.32 2.84 245 5.34 3.09 2.77 241 4.76 3.18 2.85 2.53
2000 Bias —1.08 -0.37 -0.12 029 -135 -024 -0.14 025 -132 -024 -0.13 0.14 -066 -021 -005 -0.15 —-165 -0.22 -0.11 -0.07 —-141 -0.09 —-0.10 0.03
ESD 476 131 2.01 169 533 135 208 181 596 148 195 163 494 155 198 167 601 227 201 170 647 220 2.01 1.69
ASD 3.97 1.56 2.02 1.76 4.24 1.55 2.04 1.83 4.55 1.67 2.03 1.70 4.40 1.65 1.99 1.72 5.05 227 2.02 1.73 5.21 2.28 2.04 1.79
Sts 1000 Bias —1.72 —-0.84 —-0.70 060 —-157 -0.88 -0.35 0.53 -328 —-085 —-082 0.17 —-2.69 -0.57 —-0.60 0.37 —4.70 —0.75 —0.63 0.08 —3.32 —-043 -0.58 0.15
ESD 7.72 226 353 318 692 243 340 278 109 292 334 272 109 276 343 263 219 396 318 289 186 412 331 264
ASD 575 218 334 315 505 220 3.17 289 651 269 323 284 592 264 328 272 735 360 318 283 647 355 317 263
2000 Bias —135 —-046 -0.33 039 -171 -040 -0.18 035 -3.12 -057 -035 0.12 -199 -039 -0.19 0.15 —-537 —-0.56 —-044 007 —-324 —-035 —-0.29 0.04
ESD 6.03 151 2.40 227 5.79 1.64 2.37 205 132 2.05 227 1.96 10.7 2.06 2.28 1.81 28.1 2.81 251 2.03 13.8 2.83 2.36 1.82
ASD 5.56 1.59 2.36 229 475 1.59 2.34 2.11 6.11 1.97 2.35 202 5.19 1.95 2.36 1.89 7.54 2.70 235 2.04 6.74 2.70 2.39 1.93
Panel B: ¢ =0.1
N(0,1) 1000 Bias —0.84 —-045 -0.25 036 -0.62 —-038 -0.18 032 —-1.10 —-047 -035 028 —-0.87 —-0.40 —-0.25 0.26 —-1.18 —-0.25 —-0.18 0.12 —-086 —-0.17 —-0.09 -0.10
ESD 3.42 1.15 1.67 1.56 3.29 1.17 1.69 1.57 3.71 1.31 1.72 140 3.68 133 1.75 1.41 3.79 1.97 1.71 1.53 3.69 2.00 1.73 1.53
ASD 3.05 138 180 158 3.03 138 180 158 332 151 182 154 335 150 181 154 391 200 179 155 395 200 179 155
2000 Bias —0.85 —-025 -—-0.16 0.28 -0.64 -0.21 -0.11 025 -0.87 -0.16 —0.14 0.09 —-062 —-0.12 —-0.10 0.07 —-134 -0.14 -0.08 0.07 —-097 -0.11 -0.04 0.06
ESD 3.10 0.87 1.27 1.08 3.04 0.87 1.27 1.07 3.36 0.95 1.30 1.05 3.19 0.95 1.30 1.06 3.96 1.39 1.21 1.09 3.86 1.41 1.22 1.11
ASD 283 010 130 113 283 099 130 113 305 106 129 108 304 106 129 108 394 142 128 110 394 142 128 110
sts 1000 Bias —1.62 —-043 -0.29 031 -136 -0.33 -0.16 034 -165 —-050 -0.36 0.06 -132 -039 -022 012 -266 -034 —-039 —-0.05 —-196 -0.24 -0.23 0.04
ESD 442 1.03 155 168 438 1.00 154 152 457 141 156 147 460 138 155 131 828 195 167 156 747 193 163 140
ASD 3.21 1.15 1.67 1.62 2.95 1.13 1.65 1.47 3.56 1.41 1.67 149 331 1.40 1.66 1.35 4.27 1.90 1.67 1.51 4.14 1.88 1.64 1.35
2000 Bias —1.09 -023 -0.20 0.19 -0.85 -0.18 -0.11 0.19 -172 -0.19 -0.17 0.05 —120 -0.12 —-0.21 0.06 —2.86 —0.22 -0.19 0.03 2.13 —0.03 —-0.11 -0.01
ESD 305 075 123 119 302 079 126 105 624 098 117 107 419 094 119 098 859 135 114 106 776 133 119 0.10
ASD 294 082 122 120 270 082 121 1.09 370 0.10 1.21 1.07 329 099 121 09 425 137 120 108 439 135 120 097
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Table 4

Summary for @tn,, (x10) when § = 1.

ne n o <0 vo=0 vo >0
r=2 r=1 r= r=1 r= r=1
w ay o B w oy o B w oy o B w ay o B w ay o B w ay o B
Panel A: T = 0.05
N(0,1) 1000 Bias —-0.32 -0.67 -056 055 —-0.11 -059 -044 045 -038 -055 —-051 041 —-031 —-044 -039 035 —-085 —-040 -041 029 -057 —-025 —-0.23 023
ESD 153 093 123 09 151 093 125 095 153 108 129 087 163 112 124 091 187 138 126 095 193 139 122 096
ASD 1.28 123 1.36 1.00 133 1.22 1.36 1.02 149 1.30 135 097 1.60 1.29 1.36 099 201 143 1.36 1.00 197 141 1.35 1.01
2000 Bias —046 -040 -032 -039 -0.28 -039 -029 034 -045 -026 -021 021 -037 -020 -0.19 0.16 —-0.75 -020 -020 0.16 —050 —-0.12 -0.16 0.14
ESD 176 069 091 078 165 074 094 079 152 084 089 064 166 082 093 068 194 104 093 069 176 102 093 072
ASD 128 088 098 076 129 088 098 077 151 093 097 070 150 093 097 071 182 102 097 071 184 101 097 072
sts 1000 Bias —0.69 -087 -066 062 —-047 -064 -050 051 -1.14 -060 -061 031 —-074 -056 -055 034 —123 —-055 —-052 023 -100 -024 —-040 0.1
ESD 2.34 1.14 1.55 1.32 2.46 1.20 1.56 134 276 151 1.54 1.09 279 1.57 153 1.07 282 1.66 1.56 1.08 3.05 1.65 1.48 1.09
ASD 171 1.46 1.67 1.24 173 143 1.66 122 2.09 1.61 1.65 1.16 2.06 1.61 1.65 112 253 1.78 1.66 1.18 227 171 1.63 1.12
2000 Bias —0.81 —-049 -038 048 —-0.61 —-040 —-029 042 -097 -028 -034 0.16 —-083 -022 -024 017 -137 -023 -027 0.12 —-088 —-023 -026 0.14
ESD 224 084 114 111 225 08 114 103 242 109 114 082 279 113 119 077 285 121 111 082 285 125 116 081
ASD 170 1.04 120 097 168 104 119 094 217 116 119 084 210 116 119 080 264 126 119 084 225 126 119 081
Panel B: 7 = 0.1

N(0,1) 1000 Bias —0.17 —048 -043 037 —-0.07 —-040 -029 028 -033 -037 -0.32 030 -0.17 025 —024 0.18 —-059 -029 —-029 020 -045 -0.18 —-025 0.19
ESD 1.31 0.78 1.05 0.81 1.26 0.74 1.05 079 124 0.92 1.00 071 120 0.90 1.00 0.72 140 1.07 1.04 0.76 147 1.12 1.01 0.79
ASD 1.28 1.02 1.14 0.86 123 1.02 1.13 085 1.44 1.07 1.13 081 142 1.08 1.13 0.82 1.82 1.19 1.13 083 177 1.18 1.13 0.83
2000 Bias —0.26 -026 -021 024 -0.11 -022 -021 0.17 -040 -020 -022 0.16 -033 -0.14 -0.11 0.11 -058 —-0.12 —-0.11 0.08 —-0.41 -—-0.09 -0.07 0.06
ESD 130 057 076 063 119 057 078 062 127 069 074 053 127 070 072 054 143 082 076 057 143 081 076 057
ASD 1.25 0.73 0.81 0.65 1.22 0.73 0.81 0.65 152 0.77 0.81 058 143 0.77 0.80 058 1.83 0.84 0.81 059 174 0.84 0.81 0.59
sts 1000 Bias —044 —-049 -0.46 0.36 -021 -042 -030 031 -057 -041 -041 024 -051 -027 -030 0.19 -087 -035 -038 0.16 -0.72 -0.19 -027 0.13
ESD 159 0.78 1.09 0.96 1.40 0.81 1.07 0.86 1.61 1.03 1.09 0.80 1.62 1.01 1.06 072 1.81 1.15 1.07 0.80 2.18 1.17 1.08 0.76
ASD 143 1.02 118 092 134 101 117 086 166 114 116 083 163 112 116 078 203 123 117 084 18 122 116 079
2000 Bias —043 -024 -020 023 -033 -027 -021 023 -063 -0.17 -020 008 -048 -0.16 -0.15 0.10 —-0.79 -0.19 -0.17 007 -052 -0.13 —0.11 0.07
ESD 145 0.57 0.81 0.75 1.48 0.63 0.84 0.72 167 0.75 0.82 058 153 0.79 0.79 053 1.69 0.88 0.75 0.60 1.65 0.83 0.81 0.53
ASD 143 0.73 0.84 0.74 1.30 0.73 0.83 0.68 1.64 0.81 0.83 059 1.61 0.81 0.83 056 1.96 0.88 0.83 0.60 1.81 0.88 0.83 0.56
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Table 5 R
Power (x100) of T, at the significance level 5%.
Panel A: § =2
Ne Ho r n Qo+
0.01 0.03 0.05 0.07224697 0.09 0.11 0.13
N(0, 1) (4.1) 2 1000 0.0 0.0 0.0 7.6 53.7 96.8 99.8
2000 0.0 0.0 0.0 6.3 80.4 100 100
4000 0.0 0.0 0.0 58 97.3 100 100
1 1000 0.0 0.0 0.0 6.4 54.0 96.2 100
2000 0.0 0.0 0.0 54 79.3 100 100
4000 0.0 0.0 0.0 5.0 96.9 100 100
(4.2) 2 1000 100 99.3 78.1 14.1 0.6 0.0 0.6
2000 100 100 93.7 115 9.4 0.0 0.0
4000 100 100 99.8 10.2 0.0 0.0 0.0
1 1000 100 98.5 77.3 16.7 0.5 0.0 0.0
2000 100 100 93.7 13.8 0.0 0.0 0.0
4000 100 100 99.6 84 0.0 0.0 0.0
Ne Hp r n Qo+
0.03 0.05 0.07 0.09206513 0.11 0.13 0.15
sts (4.1) 2 1000 0.0 0.0 0.5 6.3 35.0 76.9 96.3
2000 0.0 0.0 0.0 5.6 529 95.1 99.9
4000 0.0 0.0 0.0 53 78.2 99.0 100
1 1000 0.0 0.0 0.1 6.3 34.6 745 95.4
2000 0.0 0.0 0.0 5.8 54.8 95.3 100
4000 0.0 0.0 0.0 51 73.5 99.8 100
(4.2) 2 1000 98.8 90.7 58.5 17.9 3.6 0.5 0.0
2000 100 98.3 75.4 13.7 0.8 0.0 0.0
4000 100 100 92.3 12.7 0.1 0.0 0.0
1 1000 99.6 99.3 60.9 16.7 1.9 0.1 0.0
2000 100 99.5 79.1 139 0.4 0.0 0.0
4000 100 99.9 94.3 10.0 0.0 0.0 0.0
Panel B: § =1
Nt Hp r n Qo+
0.05 0.07 0.09 0.1083685 0.13 0.15 0.17
N(0, 1) (4.1) 2 1000 0.0 0.0 0.0 6.8 94.1 100 100
2000 0.0 0.0 0.0 5.5 99.6 100 100
4000 0.0 0.0 0.0 4.8 100 100 100
1 1000 0.0 0.0 0.0 7.2 93.8 100 100
2000 0.0 0.0 0.0 5.8 99.8 100 100
4000 0.0 0.0 0.0 5.1 100 100 100
(4.2) 2 1000 100 99.9 89.5 10.8 0.1 0.0 0.0
2000 100 100 99.0 9.9 0.0 0.0 0.0
4000 100 100 100 7.7 0.0 0.0 0.0
1 1000 100 100 90.5 11.9 0.0 0.0 0.0
2000 100 100 99.2 10.2 0.0 0.0 0.0
4000 100 100 100 7.9 0.0 0.0 0.0
m Ho roon @0t
0.07 0.09 0.11 0.1332366 0.15 0.17 0.19
Sts (4.1) 2 1000 0.0 0.0 0.0 83 62.9 98.6 100
2000 0.0 0.0 0.0 74 84.4 100 100
4000 0.0 0.0 0.0 5.6 99.0 100 100
1 1000 0.0 0.0 0.0 74 63.5 98.8 100
2000 0.0 0.0 0.0 6.3 86.8 100 100
4000 0.0 0.0 0.0 4.5 99.2 100 100
(4.2) 2 1000 99.9 99.5 83.9 12.6 0.4 0.0 0.0
2000 100 100 97.9 111 0.0 0.0 0.0
4000 100 100 100 10.1 0.0 0.0 0.0
1 1000 100 99.7 88.0 149 04 0.0 0.0
2000 100 100 98.7 11.8 0.0 0.0 0.0
4000 100 100 99.9 9.0 0.0 0.0 0.0

+ The size of 'fr is in boldface.

Next, we calculate the interval forecast of each sequence by the following expanding window procedure: first conduct
the estimation using the data from January 2, 2008 to December 31, 2010 and compute the conditional quantile forecast
for the next trading day, i.e., the forecast of Q;(e,11|7,); then, advance the forecasting origin by one to include one more
observation in the estimation subsample, and repeat the foregoing procedure until the end of the sample is reached.
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e =2, n=1000 6=2, n=2000

d=1, n=2000

Fig. 1. The power for the asymmetric tests §1_,A (dashed line), §£T:) (solid line), and §§ff) (solid and dotted line). Here, r = 1, 7y = 0.05, 7, = 0.1,
and n; ~ N(0, 1).
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Fig. 2. The power for the asymmetric tests §1_r (dashed line), §g}) (solid line), and 3;? (solid and dotted line). Here, r = 1, r; = 0.05, 7, = 0.1,

and 7, ~ sts.

Moreover, we evaluate the forecasting performance of the aforementioned interval forecasts by using the following
two measures:

(i) the minimum of the p-values of the two VaR backtests, the likelihood ratio test for correct conditional converge
(CC) in Christoffersen (1998) and the dynamic quantile (DQ) test? in Engle and Manganelli (2004);

(ii) the empirical coverage error is defined as the proportion of observations that exceed the corresponding VaR forecast
minus the corresponding nominal level 7.

The reason for selecting the smaller of the two p-values is that the CC and DQ tests have different null hypotheses and
hence are complementary to each other. Note that a larger p-value of either CC or DQ test gives a stronger evidence of
good interval forecasts.

Based on model (1.1) with § = 2 and 1, Table 7 reports the results of two measures at the lower (L) (or upper(U))
0.01th, 0.025th and 0.05th conditional quantiles. Here, the GQMLE 6, , with r = 2 and 1 is used in the first step estimation.
As a comparison, the results for the benchmark method (i.e, § = 2,r = 2 and g+ = o_) in Zheng et al. (2018) are
also included in Table 7. It can be seen that all methods have a poor performance for the lower conditional quantiles,
while our proposed methods, based on the asymmetric model (1.1) together with the hybrid quantile estimation, have a
significantly better interval forecasting performance for the upper conditional quantiles than the benchmark method in
Zheng et al. (2018). The poor performance of the lower conditional quantiles from our method may be because our GQMLE
0, does not account for the asymmetry of n;. We may expect to improve our forecasting performance particularly for the
lower conditional quantiles by using a skewed distribution of 7, to form our first estimation, and we leave this desired
direction for future study. In terms of the minimum of the p-values of the two VaR backtests, our proposed methods with
8 = 2 are better than those with § = 1 in four out of six cases,> while the choice of r seems irrelevant to the forecasting
performance. In terms of the empirical coverage error, our proposed methods with § = 2 (or r = 1) are better than those

2 Asin Zheng et al. (2018), the regression matrix contains four lagged hits and the contemporaneous VaR estimate for DQ test.
3 Only consider the cases that the minimum of the p-values of two backtests is larger than 5%.
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Table 6
The estimation and testing results for the S&P 500 and Dow 30 returns.
§=2 §=1
r=2 r=1 r=2 r=1
Panel A: S&P 500
w 4e—6 (9e—7) 2e—6 (4e—7) 7e—4 (1le—4) 3e—4 (5e—5)
oy 1e—7 (0.021) 4e—6 (0.011) 7e—6 (0.035) le—4 (0.017)
o 0.261 (0.036) 0.156 (0.018) 0.302 (0.043) 0.205 (0.019)
B 0.848 (0.025) 0.850 (0.018) 0.835 (0.031) 0.862 (0.018)
wr, —1le—5 (2e-5) —1le—5 (2e-5) —1le—3 (1e-3) —9e—4 (1e-3)
st —4e—7 (0.214) —2e—5 (0.182) —1e—5 (0.111) —4e—4(0.113)
- —0.812 (0.357) —0.872 (0.308) —0.517 (0.111) —0.476 (0.113)
B, —2.641 (0.004) —4.689 (0.003) —1.428 (0.172) —2.002 (0.230)
wr —6e—6 (7e—6) —5¢—6 (8e—6) —8e—4 (9e—4) 0.001 (9e—4)
oyt —2e—7 (0.089) —1e—5 (0.098) —9e—6 (0.086) —0.002 (0.082)
- —0.431 (0.143) —0.456 (0.160) —0.388 (0.093) —0.175 (0.088)
- —1.403 (0.002) —2.454 (0.002) —1.072 (0.130) —1.486 (0.154)
T, le—21 8e—14 7e—83 3e—51
Sir le—13 le—10 6e—15 7e—13
s 0.023 0.006 5¢—6 4e—5
&) 0.004 0.006 2e—5 0.030
Panel B: Dow 30
w 3e—6 (7e—7) 2e—6 (3e—7) 6e—4 (le—4) 3e—4 (5e—-5)
oy 4e—10 (0.019) 1e—8 (0.010) 2e—>5 (0.029) 1e—5 (0.016)
a 0.258 (0.035) 0.160 (0.018) 0.203 (0.037) 0.205 (0.019)
B 0.852 (0.021) 0.852 (0.018) 0.839 (0.027) 0.863 (0.017)
wr, —1e—5 (9e—6) —8e—6 (9e—6) —1e—3 (0.001) —9e—4 (1e—3)
oyt —1e—9 (0.156) —5e—8 (0.158) —4e—5 (0.114) —2e—4 (0.122)
- —0.784 (0.232) —0.862 (0.218) —0.501 (0.114) —0.474 (0.119)
B, —2.590 (0.002) —4.599 (0.002) —1.447 (0.172) —2.015 (0.230)
e, —5e—6 (6e—6) —4e—6 (6e—6) —8e—4 (9e—4) —9e—4 (8e—4)
oyt —7e—10 (0.095) —3e—8 (0.099) —3e—5 (0.090) —5e—3 (0.088)
Ay —0.427 (0.154) —0.462 (0.166) —0.377 (0.098) —0.141 (0.095)
) —1.411 (0.002) —2.465 (0.002) —1.087 (0.133) —1.504 (0.159)
T, 5¢—20 8e—14 1e—83 2e—51
Sir le—15 2e—10 5e—15 7e—13
& 0.002 5e—4 7e—6 8e—5
§e) 0.008 0.007 le—4 0.087

+ Note that t; = 0.05 and 7, = 0.1.
+ The standard deviations of all estimators are given in parentheses, and the p-values of all tests are
given.

with § = 1 (or r = 2) in general. Overall, our method with § = 2, r = 2 and «ot # «p— has the best interval forecasting
performance for both data.

6.2. Non-stationary data

In this subsection, we re-visit three daily stock return data sequences of Community Bankers Trust (BTC), China
MediaExpress (CCME) and Monarch Community Bancorp (MCBF) in Francq and Zakoian (2012, 2013a). These three
sequences are shown to be non-stationary in Francq and Zakoian (2012), while their conditional quantile estimators have
not been investigated. Motivated by this, we study their conditional quantiles by our hybrid quantile estimation method.
To compute our hybrid quantile estimator, we choose the GQMLE 6, , with r = 1 in the first estimation step. Here, we
do not consider the GQMLE é,,,, with r = 2, since Li et al. (2018) demonstrated the innovations of the fitted GARCH(1,1)
model for each sequence only have a finite second moment but not an infinite fourth moment. In the second step of
quantile estimation, we consider the hybrid quantile estimators 91,1,1 at levels T = 0.05 and 0.1. Table 8 reports the
results of ém and ém,l for each sequence, together with the results of fl for the testing problem (4.2). From the results
of fl, we can reach the same conclusion as in Francq and Zakoian (2012) that all three data are non-stationary, and hence
the estimates for the drift term w or w, may not be consistent. Meanwhile, Table 8 reports the results of S 1, Sé?ios) and
§§?‘11) for the testing problem (4.5). It is interesting to observe that the global asymmetry test §1,1 as the one in Francq and
Zakoian (2013a) indicates that all three datasets do not have the asymmetric effect, while the local asymmetry tests §§?i05)

and §§?‘1” detect some strong asymmetric effects in model (1.1) with § = 2 or 1 for the CCME and MCBF data. Although
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Table 7
Minimum p-values of two VaR backtests and empirical coverage errors for the S&P 500 and Dow 30 returns at the lower (L) (or upper (U)) 0.01th,
0.025th, and 0.05th conditional quantiles.

T Minimum p-value of VaR backtests Empirical coverage error
§=2 =1 §=2 =1
r=2 r=2
Qo+ = Qp— Dl()+750lg_ r=1 r=2 r=1 Qo+ = Qp— Dlo+750l()_ r=1 r=2 r=1
S&P 500 L1.0 0.0000 0.0000 0.0000 0.0000 0.0000 —0.0002 —0.0069 —0.0069 —0.0088 —0.0076
L2.5 0.0001 0.0000 0.0000 0.0000 0.0000 —0.0048 —0.0226 —0.0195 —0.0183 —0.0183
L5.0 0.0170 0.0000 0.0000 0.0000 0.0000 —0.0090 —0.0427 —0.0378 —0.0323 —0.0255
U5.0 0.2450 0.6996 0.6304 0.4846 0.2401 0.0054 0.0041 0.0023 0.0047 0.0011
u2.5 0.3560 0.7142 0.7616  0.1476 0.2807 0.0030 0.0030 0.0011 0.0060 0.0048
u1.0 0.2750 0.8504 0.2956 0.8213 0.6206 0.0008 0.0002 —0.0028 0.0008 0.0020
Dow 30 L1.0 0.0630 0.0000 0.0000 0.0000 0.0000 —0.0014 —0.0076 —0.0027 —0.0088 —0.0076
L2.5 0.0000 0.0000 0.0000 0.0000 0.0000 —0.0054 —0.0249 —0.0201 —0.0213 —0.0213
L5.0 0.0000 0.0000 0.0000 0.000 0.0000 —0.0072 —0.0433 —0.0420 —0.0329 —0.0286
U5.0 0.2730 0.1678 0.2304 0.1842 0.2798  0.0084 0.0072 0.0035 0.0060 0.0023
u2.5 0.5680 0.3493 0.3723 0.6350 0.3723 0.0011 0.0024 0.0005 0.0011 0.0001
u1.0 0.4180 0.8256 0.8256  0.1296 0.0002 —0.0028 —0.0004 —0.0004  0.0045 0.0020

+ Among the models with p-values > 5%, the largest p-value and the smallest empirical coverage error (in absolute value) are in boldface.

Table 8
The estimation and testing results for the BTC, CCME and MCBF returns.
Panel A: BTC Panel B: CCME Panel C: MCBF
§=2 §=1 §=2 §=1 §=2 §=1
w 8e—7 (7e—8) le—4 (1le—4) 2e—8 (2e—8) le—4 (2e-5) 8e—6 (4e—6) 8e—4 (3e—4)
oy 0.089 (0.035) 0.130 (0.040) 0.107 (0.047) 0.148 (0.048) 0.033 (0.016) 0.078 (0.003)
o 0.119 (0.038) 0.172 (0.041) 0.125 (0.063) 0.161 (0.056) 0.029 (0.014) 0.078 (0.028)
B 0.840 (0.031) 0.854 (0.027) 0.838 (0.043) 0.860 (0.033) 0.931 (0.019) 0.902 (0.024)
W, —5e—7 (1e—6) —9e—4 (4e—4) —1e—9 (6e—7) —1le—7 (3e—4) —2e—7 (le—4) —9e—4 (0.005)
eyt —0.448 (0.229) —0.320 (0.211) —0.639 (0.421) —0.498 (0.295) —1.515 (0.221) —0.479 (0.346)
ey —0.661 (0.215) —0.423 (0.182) —1.879 (0.504) —0.846 (0.298) —1e—4 (0.086) —0.009 (0.144)
B, —4.660 (le—4) —2.097 (0.060) —3.190 (le—4) —1.772 (0.032) —4.625 (0.009) —2.037 (0.263)
W, —8e—8 (7e—7) —2e—7 (3e—4) —4e—13 (2e—7) —3e—8 (2e—4) —1e—8 (9e—5) —1e—4 (0.003)
oyt —0.348 (0.211) —0.153 (0.140) —0.364 (0.268) —0.404 (0.191) —0.596 (0.229) —0.314 (0.173)
Ay —0.198 (0.178) —0.113 (0.106) —0.741 (0.267) —0.792 (0.182) —2e—5 (0.088) 0.005 (0.095)
o —2.232 (le—4) —1.522 (0.004) —1.450 (1e—4) —0.948 (0.021) —2.438 (0.008) —1.534 (0.151)
'fr 0.397 0.966 0.145 0.577 0.894 0.143
Sir 0.222 0.208 0.409 0.424 0.429 0.499
s 0257 0359 0.032 0210 le—4 0.063
) 0.298 0411 0.164 0.076 0.008 0.035

t+ Note that r = 1, 7y = 0.05 and 7, = 0.1.
+ The standard deviations of all estimators are given in parentheses, and the p-values of all tests are given.

none of the considered tests can find the asymmetric evidence for the BTC data, we think the examined BTC data still
have the asymmetric effect, since our forecasting comparison below indicates that the asymmetric PGARCH model can
perform better than its symmetric counterpart.

Next, we compute the interval forecasts for each sequence by using the same procedure as in Section 6.1, except
that the first interval forecast is calculated based on the first half of sample. Again, we follow the measurements as
in Section 6.1 to evaluate the interval forecasting performance of our methods, based on model (1.1) with the hybrid
quantile estimators. Table 9 reports the corresponding results for all three datasets. As a comparison, the forecasting
performance of the benchmark GARCH(1,1) model (i.e,, § = 2 and «g; = «_) estimated by the Laplacian QMLE ém is
also given in Table 9. It can be seen that, in terms of minimum p-values of two VaR backtests, model (1.1) with § = 1
(or 6 = 2 and «p+ # o) can provide us with a good interval forecast in 6 cases, while the benchmark GARCH(1,1)
model can only do this in one case. Similar conclusions can be obtained in terms of empirical coverage error. Particularly,
our forecasting results indicate that the BTC data have the asymmetric effect, which, however, has not been detected by
our considered tests in Table 8. Note that there are 7 cases (most of them are for the CCME data) in which none of the
methods can deliver a satisfactory interval forecast, and these cases may require some new methods for their interval
forecast.
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Table 9
Minimum p-values of two VaR backtests and empirical coverage errors for the BTC, CCME and MCBF returns at the
lower (L) (or upper (U)) 0.01th, 0.025th, and 0.05th conditional quantiles.

T Minimum p-value of VaR backtests Empirical coverage error
§=2 §=2
oo = oo ot F oo §=1 o+ = ao— oot F oo §=1
BTC L1.0 0.0025 0.3999 0.9329 —0.0100 —0.0056 —0.0012
L2.5 0.0000 0.0025 0.3335 —0.0250 —0.0206 —0.0096
L5.0 0.0000 0.0000 0.0031 —0.0302 —0.0478 —0.0302
U5.0 0.0299 0.1265 0.0182 0.0500 0.0170 0.0192
u2.5 0.0003 0.6372 0.0877 0.0228 0.0052 0.0008
U1.0 0.1296 0.8130 0.2569 0.0038 —0.0010 —0.0032
CCME L1.0 0.0301 0.9574 0.9574 —0.0100 —0.0015 —0.0015
L2.5 0.0006 0.0001 0.0000 —0.0250 —0.0165 —0.0165
L5.0 0.0000 0.0000 0.0000 —0.0500 —0.0415 —0.0415
uU5.0 0.0002 0.0000 0.0080 0.0457 0.0457 0.0372
u2.5 0.0433 0.0006 0.0006 0.0207 0.0250 0.0250
U1.0 0.6077 0.6077 0.0301 0.0057 0.0057 0.0100
MCBF L1.0 0.0031 0.0031 0.0031 —0.0100 —0.0100 —0.0100
L2.5 0.0038 0.2131 0.4400 —0.0204 —0.0112 0.0050
L5.0 0.0023 0.1220 0.1682 —0.0316 —0.0177 —0.0131
uUs.0 0.0067 0.0023 0.0001 0.0200 0.0316 —0.0030
u2.5 0.0005 0.7622 0.0001 0.0227 0.0020 —0.0188
U1.0 0.0031 0.0000 0.7747 0.0100 0.0008 0.0031

+ Among the models with p-values > 5%, the largest p-value and the smallest empirical coverage error (in absolute
value) are in boldface.

7. Conclusions

In this paper, the hybrid quantile estimators are proposed for the asymmetric PGARCH models via the transformation
T(x) = |x|°sgn(x). Asymptotic normality for the quantile estimators is established under both stationarity and non-
stationarity. As a result, tests for strict stationarity and asymmetry are obtained. It is hoped these results will add to
the tool kits of time series analysis.
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Appendix. Proofs

To facilitate our proofs, we first introduce some notations. Let @y = {6 € ©® : B < e’} and O, = {0 € Ri B <
I 1/a0(nt)||;1}. Define four [0, co]-valued processes

X oY (- PV B
=2 I

P ao(ne—) 7 Go(ne—i)’
L) B N G R
d(9) = = , dw) = = ,
@) jZ ao(ne—j) | H ao(ne—x) ) 1—21 ao(ne—j) E ao(ne—x)
> (G — Dfas(n) + a—(—n7;)’} 1=
df(v)= = =
(?) Z Bao(ne—;) 1_[ao (Me—k)

with the convention ]_[ _,; = 1 when j < 1. As shown in Francq and Zakoian (2013a), v¢(¢), 1/v¢(2), dit (), df”(¥) and
d’3 (¢) have moments of any order.
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Second, we give six technical lemmas. Lemmas A.1-A.2 from Francq and Zakoian (2013a) show that, after being
normalized by h;, the nonstationary process of(@) and its first derivatives can be well approximated by some stationary
processes. Lemma A.3 gives the asymptotic properties of the GQMLE én,r, and its proof is similar to that of Theorem 3.1
in Francq and Zakoian (2013a). Lemma A.4 proves the consistency of 5,” for yp > 0. Lemmas A.5-A.6 are used for the
proof of Theorem 3.1.

Lemma A.1. Suppose that Assumption 3.1(ii) holds.
(i) When yy > 0, for any 6 € O, the process v.(¢) is stationary and ergodic. Moreover, for any compact set ©5 C Oy,

s
0
sup M — vt(z?)‘ — 0as.ast — oo,
CECHS t
and
h; 1
sup | — — — 0as.ast — oo.
0e6; | Ot 0)  v(?)

Finally, for any 6 ¢ @, it holds that 6%(0)/h; — oo as t — oo.
(ii)) When yo = 0, for any 6 € ©, with p > 1, the process v:(?}) is stationary and ergodic. Moreover, for any compact set
OrCo
p p

s
0
9 ( )—vt(z?)‘ — 0inlP ast — oo,
beop t
and
hy )
P|—5—— —0inlPast — o0.
SC (e ) v (D)

Lemma A.2. Suppose that Assumption 3.1(ii) holds.
(i) When yo > 0, for any @ € Oy, the processes d; (%), d; (%), and d‘f (9) are stationary and ergodic. Moreover, for any
compact set ©f C O,

13020
190:9) —dt(z‘))H — 0as. ast — oo,
96(96‘ ht o
where
d(9) = (di* (9), di~(9), d (9)). (A1)

(ii) When yp = 0, for any 6 € ®, with p > 1, the processes d; (), df(9), and df(ﬁ) are stationary and ergodic. Moreover,
for any compact set ©, C ©),
1 902(0)
he 90

sup
0eOy

— dt(z‘/‘)H —0inlPast — oo.

Lemma A.3. Suppose that Assumption 3.1 holds and Eln:*" < 0.

(i) When yy < 0,and 8 < 1 for all 6 € ©, then 6,, — 6y a.s. as n — oo, and

~ 1 oh¢(6
NG =——Z[1—|t|] W) 4 o)

—4 N(O, K2r5 I"Yasn — oo. (A.2)

(ii) When v > 0, and P(n; = 0) = 0, then f)n r — Up as. as n — oo, and

. 8 10
\/E(ﬂn,r = ]0 Z[] _| t| ] U[( ) Op(])

—4 N(O, K2r3 ]7, )as n — oo. (A3)

(iii) When o = 0, P(n; = 0) =0, and B8 < ||1/ao(m)||;l for any 6 € ® and some p > 1, then 5‘,” — ¥y in probability
as n — oo, and (A.3) holds provided that Assumption 3.3 is satisfied.
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Lemma A4. Suppose that Assumptions 3.1-3.2 hold and Elne|? < oo.

(i) When yy > 0, and P(n; = 0) = 0, then ¥, — V¢ in probability as n — oo.
(ii) When yo =0, P(: =0) =0, and B < ||1/a0(77t)||;1 forany 0 € © and some p > 1, then ¥, — ¢ in probability
asn— oQ.

Proof. We only show the proof of (i), and the proof of (ii) is similar.
First, by (2.3), it is straightforward to see that (@p.r, ¥;,,) = argming .o Qn(6;), where Q,(6;) = % Zle[lt,p(ef)—lf,p]

with I} , = p,(ﬁ — b;). By using the identity
=)= o) = i+ [ e <5) i < Ol as
with ¥, (x) = t — I(x < 0), it follows that
Q=13 [fl - b,] v (f— - m)
n o7 (Onr) o7 (On.r)

t=1
672

1 [oFnn "
+72/ cnr) 1( . 5s+b,> —1< 2 5b1>ds
ni=Jo ¢ (On.r) ¢ (On.r)
= —I11(0;) + 112(6;). (A4)
Next, we consider I11(6; ). By Proposition 2.1 in Francq and Zakoian (2013a), hy — oo as t — oo, and hence
he_ 1 —
=1 = @o —0ast— oo. (A5)
hy ao(Me-1) do(ne—1)he
By Lemma A.1(i), it follows that
ad (6 ve_1(0
sup 1(0) v (®) — 0as.ast — oo. (A6)
peoy | i ao(me-1)

, - , (D L Gy L :
Define Z(6) = (1, (€, ), (—e, ;. 07 4(0)) and () = (0, =, rls 2100 since (6 1) /h 1 = (0 ,) and
(—€, 1) /he—1 = (—n;_,)’, by (A.5)-(A.6) we have
Z(0)
h;

sup

- gt(z?)H — 0as.ast — oo. (A7)
0oy

Note that z, = Zt(én,r) and y; = T(n;)h;. Then, it is not difficult to have

1 [ 0.z /h; T(n:)
111(0;) = — ———— —b | Y| ——— — b,
=4 ; 67 (Bnr)/he ] v (of(en,r)/ht )
1[0l a(Bar) T(n)
= — % - b-,; T — = — br 1
L ve(ar) :| v (Uta(gn,r)/ht ) o)
1 = [0/ ci(90) T(ne)
S 13 —b, |V [ ———— — b, 1), A8
n t=1 Ut(ﬁo) ] w <O’t8(9n,r)/h[ ) * OP( ) ( )

where the second equality holds by Lemma A.1(i), (A.7) and the boundedness of ¥ .(-), and the last equality holds by
Taylor’s expansion, Lemma A.3(ii), and the fact that

1 0 s
sup fZ—<§[( )> = 0p(1).
veoy |1 = 00 \ ve(D)
Furthermore, by the double expectation, Lemma A.1(i), Assumption 3.2, and standard arguments for tightness, we can
prove
15~ [0;5¢(D0) H ( T(n:) ) (T(m) )]
sup |— —-b ———— —b, | — —b = 0p(1). A9
s n§[ we) I \Geym ) TV Gy ) ] T o (A9

Hence, by (A.8) and (A.9), it follows that

_ 1 [0s@o) T(n)
In(er)—nz[ - (50) m]m(vt@n‘r) bf)+op(1)

t=1
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0r5e(Po) } ( T(n:) ) }
E I/II ~ - b + 0 (1)
[ vi(Do) (Dnr) ’
(ne

0; se(Do) )
EH: e 190 bf] wt(v[(ﬁo) br>}+op(1)
{
(1)

E {[918 — be] Yo (T(ne) — bo)} + 0p(1)

Op

(A.10)

where the second equallty holds by the uniform ergodic theorem, the third equality holds by the dominated convergence
theorem and Lemma A.3(ii), the fourth equality holds since v¢(¢9) = 1 and ¢;(¥y) = (0, &), and the last equality holds
by the double expectation and the fact that the tth quantile of T(#;) is b;.

Third, we consider I;5(6; ). As for (A.10), we can show

V. E—be
Ia6,) = E i/ L(T(n) < 5+ be) — 1 (T(n) < b»as} + 0p(1)
0

OrE—V0k |
=E i/ [f(ﬁ,)]sds} +0,(1)
0

= H(9,) + 0,(1), (A.11)
where 9, lies between s + b, and b,, and the second equality holds by the double expectation, Taylor’s expansion, and

the fact that b, = 9;.&;.
Note that [9| < |b;| + |(¥: — Pr0)'&| < Co for some constant Cop > 0. By (A4), (A.10) and (A.11), we have that
Qn(6;) = H(Y;) + 0,(1), where

{ [lﬂf\x|<c0 F(x)]

H(ﬁr) > (191 - 19rO)/E stst} (79 )

and the equality holds if and only if ¥, = ;0. Hence, the proof of (i) is completed by standard arguments, invoking the
compactness of ®,. O

Write z, = (1,%,), where Z, = (&, (=610, 02 ,(Bn,)). Define zz = (1,z ), where z;y =

((63—_])57(_6 - ) ’0;3 ]( 0))

Lemma A.5. Suppose that Assumptions 3.1-3.2 hold and E|n:|*" < oo.
(i) If yo > 0, and P(m =0) =0, then
L =0,(1), I = —f(bo)be [y [V(Bnr — 20)] + 0p(1), (A12)
and I = [—f(b:)R29 + 0p(DIVN(Denr — P20)] + 0p(1), (A13)

where

1 o P Zt Zt» ]
L= — ( _d z)[ LA
2 \/ﬁ Z‘pr Vi Tn,rét O}S(en.r) 0[8(90)

t=1

I3 = % Z [1/fz (}’t m r ) Ve (Yt m r_ )] (jt(go),

= G ) o]

(ii)Ifyo =0,P(n: =0)=0, 8 < ||1/a0(r;t)||;1 for any 6 € ® and some p > 1, and Assumption 3.3 is satisfied, then
(A.12)-(A.13) hold.

Proof. We only show the proof of (i), and the proof of (ii) is similar.
First, we consider I,. Without loss of generality, we only show that I,; = 0,(1), where I is the first entry of I,. Note

that
I = wa( Ot ) Py | s = s |
Jn T et 02(Bny)  0L(60)

/ (m 1) he_q 80} (en r)
Z ]//r ( rnr t) atz‘s(@n r) 81.9/ (19 - 190)
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(1) hy 130[(9 P -
Z W‘E ( ™Tn,r t) [zal(on,r) EY (Cl)n.r - (1)0)

= D11+ b2 (A.14)

By the similar arguments for Lemma 7.5 in Francq and Zakoian (2013a), we can show that I, » = 0,(1). For I3 1, since
(O — = 0p(1) by Lemma A.3(ii), we have

! (P the=1/he] 1 902 (r) .
wa (J’t ™n,r f) [Gt( n,r)/htlz h[ 9 [\/ﬁ(ﬁn.r — 99)]

- (n?—_1)6 di(o) ~
- Z I/IT (yt zn r t) ao(nt_l)m[\/ﬁ(ﬂn,r - 7}0)] + Op(l)
s&ﬂ%mm—%n+%n, (A.15)

where the second equality holds by Lemmas A.1(i) and A.2(i) and the similar arguments as for (A.8) and (A.10).
Write v, (ye — 0.2 ) = Y (T(ne) — be + Ce.ne), Where ¢; e = by — 6, .2 /h;. Since the rth quantile of T(n,) is b-,
by the ergodic theorem we have

11

(0", di(90)
ao(ne—1) [ve(Po)]?

IJH=72 Ve (T(1) = b + Cone) — e (T(ne) = by)] 0p(1)

*E Xe(Czone) +0p(1),
n
t—1

where
'7[ 1)8 d (7}0)
ao(me—1) [ve(90) 2

By Lemmas A.1(i), A.2(i), A.3(ii) and A.4(i), we know that ¢, ,» = 0,(1) for sufficient large t. Hence, for any ¢, n > 0, there
exists a tp(e) > 0 such that

xe(X) = [r (T(ne) — be + %) — Y (T(ne) — bo)]

&
P(lcenel > 1) < 3 (A.16)
for t > ty, and
_l n
Bia= ; Xe(Cene) + 0p(1). (A17)
=t

Note that supy-,

%Z?:ro Xt(X)) < SUPy<, [xe(X)] and lim, .o E(supj <, [x:(x)]) = O by the double expectation and
dominated convergence theorem. Thus, by Markov’s inequality, for any ¢, &’ > 0, there exists an ng(¢) > 0 such that
P(supy <y, |2 s o Xe(X ‘ &') < £/2. By (A.16), it follows that

P ( %ZX[(Cr,nt) > 5/) <P ("11 ZXI(Cr,n[)

t=ty t=ty

> &', el < 7}0) +P (lcr,ntl > 770)

> ¢ -|-E
2

which implies that 121 1 = 0p(1) by (A.17), I1,1 = 0p(1) by (A.15), and I = 0,(1) by (A.14).

Second, by Lemmas A.1(i), A.2(i), A.3(ii) and A.4(i), Proposition 2.1 in Francq and Zakoian (2013a), and the similar
arguments as for Theorem 2.1 in Zheng et al. (2018), we can prove the result for I5.

Third, we consider I4. Let

Ve —UZiy o+ 0Zy Ve —VloZty 0 Ziy
Ju) = - — e (T -
Uf(a) ) I:Wr ( ht ht w‘f ht h[ 0_;3(90)

V.02t + wr0 UZy o+ 92t Zp
=[1{T() < =222 2 ) — 1 T(ne) < —=2 + 0% LA
[ ( (ne) h, (nr) h, h, 0;3(90)

n

LIPS

t=ty
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Then, we can see that I; = ﬁ Y t_1 Ue(@enr, Uen,r ), Where Uiny = Upnr — Pro. Since I(+) is an increasing function and
w, < &y < o, for some constants @, and @, we only need to show

1 « . .
ﬁ Z (@, Urn,r) = [—f(b:)2y + Op(1)](\/ﬁurn,r) +0p(1) (A.18)
=1
for any fixed w. Rewrite
,1 n
= Ut(w7 u) = Wﬂ(w! u) + Sﬂ(w! u)a (Alg)
i
where
Wi(w, u) ZE[Ur o, U)|Fi—1] and Sy(w,u) = IZ v(w, u) — E[ue(w, u)| Fr—11} .

By Assumptions 3.1—3.2, Lemmas A.1(i) and A.4(i), and Proposition 2.1 in Francq and Zakoian (2013a) it is not difficult
to show that Wy(w, u) = —f(b;)2,(v/nu) + 0,(1). Meanwhile, by similar arguments as for Lemma 2.2 in Zhu and Ling
(2011), we can show that for fixed w and any n > 0, we have

sup [|Sn(w, )| — 0,(1)
i<y 14Vl
which implies that Sy(w, fizn,r) = 0p(«/Nin ) 4 0p(1) by Lemma A.4(i). Hence, by (A.19) it follows that

1 < . . .
T 20 ) = (020 ) -+ 05 i) + 01,
t=1
i.e., (A.18) holds. This completes all of the proofs. O

Lemma A.6. Suppose that Assumptions 3.1-3.2 hold and E|n|*"

(i) If yo > 0, and P(n; = 0) = O, then

Zio
wa — Qey) oo oD

—>d N(O, (1: -7 ) (&&])) asn — oo, (A.20)

< Q.

where
Zy

1 . ! = i
Is = ﬁ ; Y (J/r - 9102[) m-

(i) Ifyo =0,P(n: =0)=0, 8 < ||1/a0(r;t)||;1 for any 6 € © and some p > 1, and Assumption 3.3 is satisfied, then
(A.20) holds.

Proof. The proof can be accomplished by following the similar arguments as for Lemma 7.4 in Francq and Zakoian
(2013a). O

Proof of Theorem 3.1. (i) Following the proofs in Zheng et al. (2018) and Hamadeh and Zakoian (2011), we can show

ViBons — 0r0) = { Zwr ~Q.,) (eoj‘bf”Tm(é"*r—@o)lﬂp(n, (A21)

which entails (i) by Lemma A.3(i) and standard arguments.

(ii) Following the same arguments as for Theorem 2.1 in Francq and Zakoian (2012), the subgradient derivative with
respect to ¥, is asymptotically equal to zero at the minimum, since ¥;,, —p, U0 by Lemma A.4(i), and .o belongs to
the interior of ®,. This implies

lelfz (yr 0L, f) Z(t; 3 (A22)

Moreover, by Lemmas A.5(i) and A.6(i), we have

Z /- (Yr rn r [> G;(tg:r)
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=h+L+1l+1s
—fb)b Ty [V/n(Bnr — 90)] + [—f (b )29 + 0p(DINVA(Den s — D20)]

Zwr '7[ an) 5(9)+0p( )

By (A.22), it follows that

V(Deny = Br0) = Zw, Q) 2| = b @5 s — 90)] + 0y(1), (A23)

f(b ) o’ (60)

which implies (ii) holds by Lemmas A.3(ii) and A.6(i), and standard arguments.
(iii) Its proof can be accomplished by following the similar arguments as for (ii). This completes all of the proofs. O
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