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a b s t r a c t

Asymmetric power GARCH models have been widely used to study the higher order mo-
ments of financial returns, while their quantile estimation has been rarely investigated.
This paper introduces a simple monotonic transformation on its conditional quantile
function to make the quantile regression tractable. The asymptotic normality of the
resulting quantile estimators is established under either stationarity or non-stationarity.
Moreover, based on the estimation procedure, new tests for strict stationarity and
asymmetry are also constructed. This is the first try of the quantile estimation for
non-stationary ARCH-type models in the literature. The usefulness of the proposed
methodology is illustrated by simulation results and real data analysis.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal work in Engle (1982) and Bollerslev (1986), the generalized autoregressive conditional heteroskedas-
icity (GARCH) model has been widely used to capture the volatility clustering of financial data; see, e.g., Francq and
akoïan (2010) for an overview. Financial data are well known to exhibit conditional asymmetric features, in the sense that
arge negative returns tend to have more impact on future volatilities than large positive returns of the same magnitude.
his stylized fact, which is known as the leverage effect, was first documented by Black (1976), and leads to many variants
f the classical GARCH model (see, e.g., Higgins and Bera, 1992; Li and Li, 1996; Zhu et al., 2017). Among the existing
symmetric ARCH-type models, the first order asymmetric power-transformed GARCH (PGARCH) model proposed by Pan
t al. (2008) is often used in applications, and it is defined by

ϵt = h1/δ
t ηt , ht = ω0 + α0+(ϵ+

t−1)
δ
+ α0−(−ϵ−

t−1)
δ
+ β0ht−1, (1.1)

where δ is a given positive constant exponent, ω0 > 0, α0+ ≥ 0, α0− ≥ 0, β0 ≥ 0, and {ηt} is a sequence of independent
and identically distributed (i.i.d.) random variables. Here, the notations x+

= max(x, 0) and x−
= min(x, 0) are used.

Model (1.1) is motivated by the Box–Cox transformation, and it covers the classical GARCH model in Engle (1982) and
Bollerslev (1986), the absolute value GARCH in Taylor (1986), the GJR model in Glosten et al. (1993), the threshold GARCH
model in Rabemananjara and Zakoïan (1993), the PARCH model in Hwang and Kim (2004), and many others.

Following Hörmann (2008), model (1.1) is stationary if and only if the top Lyapunov exponent γ0 < 0, where

γ0 = E log a0(ηt ), a0(x) = α0+(x+)δ + α0−(−x−)δ + β0. (1.2)
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By assuming ηt follows a standard normal distribution, the Gaussian quasi-maximum likelihood estimator (QMLE) of
model (1.1) was studied in Pan et al. (2008) and Hamadeh and Zakoïan (2011) for γ0 < 0, and Francq and Zakoïan
(2013a) for γ0 ≥ 0. Although the Gaussian QMLE has some desired asymptotic properties, it overlooks a crucial practical
feature that the quantile structure of the financial data actually varies in shape across the quantile levels (Engle and
Manganelli, 2004). Nowadays, the estimation of the conditional quantile becomes increasingly important for the financial
data, since it is related to the quantile-based risk measures such as Value-at-Risk (VaR) and Expected Shortfall (ES), which
are implemented worldwide in financial market regulation and banking supervision. However, only few attempts have
been made to study the quantile estimation for model (1.1), especially when γ0 ≥ 0.

This paper contributes to the literature in two aspects. First, we extend the idea of Zheng et al. (2018) to construct
hybrid conditional quantile estimator of ϵt in model (1.1). To elaborate this idea, we let θ0 = (w0, α0+, α0−, β0)′ and
τ0 = bτ θ0, where τ ∈ (0, 1) is the given quantile level, bτ = T (Qτ ,η), Qτ ,η is the τ th quantile of ηt , and T (x) = |x|δsgn(x)
s a given monotonic transformation function. Then, the τ th quantile of the transformed data yt = T (ϵt ) conditional on
t−1 is

Qτ (yt |Ft−1) = bτ (ω0 + α0+(ϵ+

t−1)
δ
+ α0−(−ϵ−

t−1)
δ
+ β0ht−1) = θ ′

τ0zt , (1.3)

nd the τ th quantile of the original data ϵt conditional on Ft−1 is

Qτ (ϵt |Ft−1) = T−1(Qτ (yt |Ft−1)
)
, (1.4)

here zt = (1, (ϵ+

t−1)
δ, (−ϵ−

t−1)
δ, ht−1)′, Ft is the σ -field generated by {ϵt , ϵt−1, . . .}, and T−1(x) = |x|1/δsgn(x). The result

1.3) implies that Qτ (yt |Ft−1) is linear in terms of zt , and hence if zt is observable, θτ0 can be easily estimated by the
egression quantile estimation. With this quantile estimator of θτ0, then Qτ (yt |Ft−1) can be estimated via (1.3), leading
o an estimator of Qτ (ϵt |Ft−1) according to (1.4). However, zt contains an unobservable ht−1, which has a recursive form,
dding difficulty to the theoretical derivation and numerical optimization. To circumvent this difficulty, we replace ht−1
y its initial estimator to calculate the quantile estimator of θτ0; see also Xiao and Koenker (2009), So and Chung (2015)
nd Zheng et al. (2018). Indeed, Zheng et al. (2018) estimated ht−1 based on the Gaussian QMLE, which needs Eη4t < ∞

n theory. To relieve the moment condition of ηt , we estimate ht−1 by using the generalized QMLE (GQMLE) in Francq
nd Zakoïan (2013b), and our theory only requires E|ηt |

2r < ∞, where r is a user-chosen positive number, indicating the
stimation method used. Note that there is a vast literature on the estimation of conditional quantile for financial data,
nd two leading examples are the filtered historical simulation (FHS) method (Barone-Adesi et al., 1998; Barone-Adesi
nd Giannopoulos, 2001; Kuester et al., 2006) and the conditional auto-regressive VaR-method called ‘‘CAViaR’’ (Engle
nd Manganelli, 2004) . As argued in Zheng et al. (2018), the hybrid conditional quantile estimation method combines the
dvantages of both FHS and CAViaR approaches, since it can exploit the ARCH-type structure in both the global estimation
f the volatility and the local estimation of quantiles.
Second, we study the asymptotic properties of the quantile estimator of θτ0. Denote θτ0 = (ωτ0, ϑ ′

τ0)
′, where

τ0 = bτω0 and ϑτ0 = bτ (α0+, α0−, β0)′. Under some regularity conditions, the quantile estimator of ϑτ0 is shown to
e asymptotically normal for either γ0 < 0 or γ0 ≥ 0, while the quantile estimator of ωτ0 is asymptotically normal only
or γ0 < 0. Our findings are similar to those in Jensen and Rahbek (2004a,b) and Francq and Zakoïan (2012, 2013a), and
ur asymptotic results for γ0 ≥ 0 are the first try of the quantile estimation for non-stationary ARCH-type models in
he literature. Compared to the Gaussian QMLE in Francq and Zakoïan (2013a), our quantile estimator takes the quantile
tructure of ϵt into account through the transformation function T (·), and it could be a more appealing tool to investigate
he quantile-based measures such as VaR and ES (Engle and Manganelli, 2004; Francq and Zakoïan, 2015). Moreover, our
uantile estimator only requires E|ηt |

2r < ∞ for its asymptotics, and hence it is more appropriate to study the heavy-
ailed financial data than the Gaussian QMLE, which requires E|ηt |

4 < ∞ for its asymptotic normality. As a by-product,
ew tests for strict stationarity and asymmetry of model (1.1) are derived from our estimation procedure.
The remainder of this paper is organized as follows. Section 2 introduces our hybrid conditional quantile estimation

rocedure. Section 3 studies the asymptotic properties of our proposed quantile estimator. The strict stationarity tests and
he asymmetry tests are provided in Section 4. Simulation results are reported in Section 5. Applications are presented in
ection 6. The conclusions are offered in Section 7. The proofs are given in Appendix.
Throughout the paper, | · | denotes the absolute value, ∥ · ∥ denotes the vector l2-norm, ∥ · ∥p denotes Lp-norm for a

andom variable, A′ is the transpose of matrix A, →p denotes the convergence in probability, →d denotes the convergence
n distribution, op(1) (Op(1)) denotes a sequence of random numbers converging to zero (bounded) in probability, C is a
eneric constant, R = (−∞,∞), R+ = (0,∞), I(·) is the indicator function, and sgn(a) = I(a > 0) − I(a < 0) is the sign
f any a ∈ R.

. The hybrid conditional quantile estimation

Let θ = (ω, α+, α−, β)′ ∈ Θ be the unknown parameter vector of model (1.1), and θ0 ∈ Θ be its true value, where Θ
s the parameter space, and it is a compact subset of R4

+
. Moreover, let θτ = bτ θ ∈ Θτ , and θτ0 be its true value, where

τ = {θτ : θ ∈ Θ}. Assume that {ϵ1, ϵ2, . . . , ϵn} are observations generated from model (1.1). By (1.3), the parametric
th quantile of the transformed data yt is

+ δ − δ ′
Qτ (yt |Ft−1) = bτ (ω + α+(ϵt−1) + α−(−ϵt−1) + βht−1) = θτ zt . (2.1)
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f {ht−1} are observable, we are able to estimate Qτ (yt |Ft−1) by the linear quantile regression. However, {ht−1} are not
bservable, and we shall replace them by some initial estimates. To accomplish this, we define ht (θ ) recursively by

ht (θ ) = ω + α+(ϵ+

t−1)
δ
+ α−(−ϵ−

t−1)
δ
+ βht−1(θ ).

hen, ht = ht (θ0). In practice, we calculate h1/δ
t (θ ) by σt (θ ), where

σ δt (θ ) = ω + α+(ϵ+

t−1)
δ
+ α−(−ϵ−

t−1)
δ
+ βσ δt−1(θ )

with given initial values ε0 and σ δ0 (θ ).
Based on (1.4) and (2.1), our hybrid conditional quantile estimation procedure for Qτ (ϵt |Ft−1) has the following three

steps.
Step 1 (Estimation of the global model structure). Using the generalized quasi-maximum likelihood estimator (GQMLE)

in Francq and Zakoïan (2013b) to estimate the parameter in model (1.1),

θ̃n,r = (ω̃n,r , ϑ̃
′

n,r )
′
= argmin

θ∈Θ

1
n

n∑
t=1

log
[
σ r
t (θ )

]
+

|ϵt |
r

σ r
t (θ )

≡ argmin
θ∈Θ

1
n

n∑
t=1

lt,r (θ ), (2.2)

where r is a user-chosen positive number. Based on θ̃n,r , compute the initial estimates of {ht} as {σ δt (θ̃n,r )}.
Step 2 (Quantile regression at a specific level). Perform the weighted linear quantile regression of yt on z̃t =

(1, (ϵ+

t−1)
δ, (−ϵ−

t−1)
δ, σ δt−1(θ̃n,r ))

′ at quantile level τ ,

θ̂τn,r = (ω̂τn,r , ϑ̂ ′

τn,r )
′
= argmin

θτ∈Θτ

1
n

n∑
t=1

ρτ (yt − θ ′
τ z̃t )

σ δt (θ̃n,r )

= argmin
θτ∈Θτ

1
n

n∑
t=1

ρτ

(
yt − θ ′

τ z̃t
σ δt (θ̃n,r )

)

≡ argmin
θτ∈Θτ

1
n

n∑
t=1

lt,ρ(θτ ), (2.3)

where ρτ (x) = x[τ − I(x < 0)]. Based on θ̂τn,r , estimate the τ th conditional quantile of yt by Q̂τ (yt |Ft−1) = θ̂ ′
τn,r z̃t .

Step 3 (Transforming back to ϵt ). Estimate the τ th conditional quantile of the original observation ϵt by Q̂τ (ϵt |Ft−1) =

T−1(θ̂ ′
τn,r z̃t ).

For the GQMLE θ̃n,r in Step 1, Francq and Zakoïan (2013b) established its asymptotic normality under some regularity
conditions. The non-negative user-chosen number r involved in θ̃n,r indicates the estimation method used. Particularly,
when r = 2, θ̃n,r reduces to the Gaussian QMLE; and when r = 1, θ̃n,r reduces to the Laplacian QMLE. So far, how to choose
an ‘‘optimal’’ r (under certain criterion) is unclear, and simulation studies in Section 5 suggest that we could choose a
small (or large) value of r when ηt is heavy-tailed (or light-tailed).

For the quantile estimator θ̂τn,r in Step 2, Zheng et al. (2018) studied its asymptotics for a special case that δ = 2 and
α0+ = α0− with γ0 < 0 (i.e., the stationary classical GARCH model) and r = 2 (i.e., the Gaussian QMLE). In the present
paper, we will study the asymptotic properties of θ̂τn,r for the general case.

3. Asymptotic properties of the hybrid quantile estimator

In this section, we study the asymptotic properties of the hybrid conditional quantile estimator. First, we give some
technical assumptions as follows:

Assumption 3.1. (i) θ0 is an interior point of Θ; (ii) the random variable ηt cannot concentrate on at most two values,
the positive line or the negative line, and P(|ηt | = 1) < 1; (iii) E|ηt |

r
= 1.

Assumption 3.2. The density f (·) of T (ηt ) is positive and differentiable almost everywhere on R.

Assumption 3.3. When t tends to infinity,

E

{
1 +

t−1∑
i=1

a0(η1) . . . a0(ηi)

}−1

= o
(

1
√
t

)
.
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Assumptions 3.1(i)–(ii) used by Francq and Zakoïan (2013a) are usually assumed for ARCH-type models. Assump-
ion 3.1(iii) is the identification condition for the GQMLE; see Francq and Zakoïan (2013b). If r = δ, we have

E(|ϵt |δ|Ft−1) = htE|ηt |
δ
= ht

y (1.1) and Assumption 3.1(iii), meaning that we can directly predict the δth moment of |ϵt | by ht . If r ̸= δ, the δth
moment of |ϵt | has to be predicted by htE|ηt |

δ in this general case.
Assumption 3.2 is standard for quantile estimation. Assumption 3.3 is needed only for γ0 = 0, and it is used to prove

that when γ0 = 0,

1
√
n

n∑
t=1

1
ht

→ 0 as n → ∞

in L1 (see Francq and Zakoïan (2012, 2013a)).
Let κ1r = {E[|ηt |

r I(ηt < Qτ ,η)] − τ }/r and κ2r = (E|ηt |
2r

− 1)/r2. Define the 4 × 4 matrices:

J = E
[
1
h2
t

∂ht (θ0)
∂θ

∂ht (θ0)
∂θ ′

]
, Ω = E

[
ztz ′

t

h2
t

]
,

H = E
[
zt
h2
t

∂ht (θ0)
∂θ ′

]
, Γ = E

[
β0zt
h2
t

∂ht−1(θ0)
∂θ ′

]
,

and the 3 × 3 matrices:

Jϑ = E[dt (ϑ0)dt (ϑ0)′], Ωϑ = E[ξtξ
′

t ],

Hϑ = E
[
ξtdt (ϑ0)′

]
, Γϑ = E

[
β0ξt

dt−1(ϑ0)′

a0(ηt−1)

]
,

where dt (ϑ) is defined in (A.1), and

ξt =

(
(η+

t−1)
δ

a0(ηt−1)
,
(−η−

t−1)
δ

a0(ηt−1)
,

1
a0(ηt−1)

)′

.

heorem 3.1. Suppose that Assumptions 3.1-3.2 hold and E|ηt |
2r < ∞.

(i) [Stationary case] When γ0 < 0, and β < 1 for all θ ∈ Θ ,
√
n(θ̂τn,r − θτ0) →d N(0,Σr ) as n → ∞, (3.1)

where

Σr = Ω−1
[
τ − τ 2

f 2(bτ )
Ω +

κ1rδbτ
f (bτ )

(Γ J−1H ′
+ HJ−1Γ ′) + κ2rδ

2b2τΓ J−1Γ ′

]
Ω−1.

(ii) [Explosive case] When γ0 > 0, and P(ηt = 0) = 0,
√
n(ϑ̂τn,r − ϑτ0) →d N(0,Σϑ,r ) as n → ∞, (3.2)

where

Σϑ,r = Ω−1
ϑ

[
τ − τ 2

f 2(bτ )
Ωϑ +

κ1rδbτ
f (bτ )

(
Γϑ J−1

ϑ H ′

ϑ + Hϑ J−1
ϑ Γ ′

ϑ

)
+ κ2rδ

2b2τΓϑ J
−1
ϑ Γ ′

ϑ

]
Ω−1
ϑ .

(iii) [At the boundary of the stationarity region] When γ0 = 0, P(ηt = 0) = 0, β < ∥1/a0(ηt )∥−1
p for any θ ∈ Θ and some

p > 1, and Assumption 3.3 is satisfied, then (3.2) holds.

Remark 1. Similar to the Gaussian QMLE in Jensen and Rahbek (2004a,b) and Francq and Zakoïan (2012, 2013a), ϑ̂τn,r is
always asymptotically normal regardless of the sign of γ0, and ω̂τn,r is shown to be asymptotically normal only for γ0 < 0.

Our results in Theorem 3.1 are also related to those in Zheng et al. (2018), but with three major differences. First, the
results in Theorem 1 of Zheng et al. (2018) are nested by ours with γ0 < 0, α0+ = α0− and δ = r = 2. Second, the results
in Zheng et al. (2018) need the assumption E|ηt |

4 < ∞, while our results hold under a weaker assumption E|ηt |
2r < ∞,

hich is applicable to the heavy-tailed ηt . Third, the results of Zheng et al. (2018) are only for the stationary GARCH
model, but our results cover both stationary and non-stationary asymmetric PGARCH models, leading to a much larger
applicability scope than theirs.

Remark 2. To prove the result in (iii), a technical condition β < ∥1/a0(ηt )∥−1
p is needed, and it poses an additional

restriction on the parameter β . Clearly, the boundary point ∥1/a0(ηt )∥−1
p is related to the constant p, the distribution of

η , and the value of (δ, α , α , β ). Table 1 reports the values of ∥1/a (η )∥−1 for several choices of p, η , and δ, where
t 0+ 0− 0 0 t p t
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he values of ∥1/a0(ηt )∥−1

p when γ0 = 0 with β0 = 0.9.

ηt p α0−

0.01 0.04 0.07 0.10 0.13 0.16 0.19 0.22 0.25

Panel A: δ = 2

N(0, 1) 2 0.97366 0.98019 0.98380 0.98524 0.98497 0.98325 0.98023 0.97599 0.97066
4 0.95886 0.96792 0.97274 0.97465 0.97429 0.97201 0.96797 0.96215 0.95448
6 0.94949 0.95953 0.96467 0.96667 0.96630 0.96391 0.95958 0.95320 0.94441

t5 2 0.96867 0.97439 0.97750 0.97894 0.97913 0.97831 0.97662 0.97410 0.97075
4 0.95403 0.96143 0.96531 0.96708 0.96732 0.96631 0.96421 0.96106 0.95677
6 0.94528 0.95323 0.95727 0.95909 0.95934 0.95831 0.95614 0.95284 0.94826

t2 2 0.96093 0.96276 0.95718 0.96282 0.97221 0.98027 0.98736 0.99368 0.99940
4 0.94825 0.95038 0.94380 0.94596 0.95183 0.95670 0.96087 0.96450 0.96772
6 0.94116 0.94335 0.93651 0.93704 0.94125 0.94468 0.94756 0.95003 0.95219

Panel B: δ = 1

N(0, 1) 2 0.98360 0.98868 0.99209 0.99401 0.99459 0.99397 0.99224 0.98952 0.98587
4 0.97119 0.97972 0.98545 0.98867 0.98964 0.98859 0.98570 0.98113 0.97501
6 0.96174 0.97257 0.97982 0.98389 0.98512 0.98379 0.98013 0.97435 0.96659

t5 2 0.98177 0.98659 0.98993 0.99198 0.99290 0.99279 0.99176 0.98987 0.98720
4 0.96894 0.97679 0.98217 0.98547 0.98694 0.98676 0.98511 0.98208 0.97776
6 0.95955 0.96931 0.97597 0.98002 0.98182 0.98161 0.97958 0.97585 0.97052

t2 2 0.96174 0.97257 0.97982 0.98389 0.98512 0.98379 0.98013 0.97435 0.96659
4 0.96629 0.97588 0.97941 0.97865 0.97438 0.96686 0.96342 0.96892 0.97385
6 0.95788 0.96930 0.97347 0.97258 0.96753 0.95856 0.95315 0.95703 0.96043

the value of β0 is fixed to be 0.9, the value of α0− is set to be 0.01, 0.04, . . . , 0.25, and the value of α0+ is uniquely
etermined by the condition γ0 = 0. From this table, we can find that (i) the value of β0 always lies in the region

{β : β < ∥1/a0(ηt )∥−1
p }; (ii) the values of ∥1/a0(ηt )∥−1

p do not vary too much across α0− or the distribution of ηt , although
they become slightly smaller as the values of p become larger. In sum, based on our calculations, the technical condition
β < ∥1/a0(ηt )∥−1

p seems mild, and it should not hinder the practical application of our proposed estimation.

Remark 3. Our results in Theorem 3.1 are derived for a known exponent δ. When δ is unknown in general, we can include
δ as an additional unknown parameter in our first estimation procedure, and the asymptotics of the resulting GQMLE can
be established with some minor modifications (see also Section 6 in Francq and Zakoïan (2013a)). However, since the
unknown exponent δ is involved in the transformation function T (·), how to derive the asymptotics of the corresponding
quantile estimator in the second step estimation procedure is challenging at this stage, and we leave this interesting topic
for the future study.

Let z̄t,ϑ = ((ϵ+

t−1)
δ, (−ϵ−

t−1)
δ, σ δt−1(θ0))

′. By (A.21), (A.23) and Lemma A.3, we have

√
n(θ̂τn,r − θτ0) = Ω−1

[
1

√
n

n∑
t=1

(Uut + Vvt)

]
+ op(1)

≡ Ω−1

[
1

√
n

n∑
t=1

et

]
+ op(1), (3.3)

√
n(ϑ̂τn,r − ϑτ0) = Ω−1

ϑ

[
1

√
n

n∑
t=1

(
Uuϑ,t + Vϑvϑ,t

)]
+ op(1)

≡ Ω−1
ϑ

[
1

√
n

n∑
t=1

eϑ,t

]
+ op(1), (3.4)

where U = 1/f (bτ ) and

V =
bτ δ
r
Γ J−1, ut = ψτ

(
ηt − Qτ ,η

) zt
ht (θ0)

, vt = [1 − |ηt |
r
]
1
ht

∂ht (θ0)
∂θ

,

Vϑ =
bτ δ
r
Γϑ J−1

ϑ , uϑ,t = ψτ
(
ηt − Qτ ,η

) z̄t,ϑ
σ δt (θ0)

, vϑ,t = [1 − |ηt |
r
]
1
ht

∂σ δt (θ0)
∂ϑ

with ψ (x) = τ − I(x < 0).
τ
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Based on θ̃n,r , we can calculate Ω̃r , Ũr , ũr,t , b̃τ ,r , Γ̃r , J̃r , and ṽr,t , which are the sample counterparts of Ω , U , ut , bτ , Γ ,
J , and vt , respectively.1 Since et is a martingale difference sequence, by (3.3) we can estimate Σr by

Σ̃r = Ω̃−1
r

[
1
n

n∑
t=1

ẽr,t ẽ′

r,t

]
Ω̃−1

r ,

where ẽr,t = Ũr ũr,t + Ṽr ṽr,t with Ṽr = (b̃τ ,rδ/r)Γ̃r J̃−1
r . Under the conditions of Theorem 3.1(i), we can show that Σ̃r is a

consistent estimator of Σr for γ0 < 0.
Partition ũr,t = (ũωr,t , ũ′

ϑr,t )
′, ṽr,t = (ṽωr,t , ṽ′

ϑr,t )
′, and

Σ̃r =

[
Σ̃ωω,r Σ̃ωϑ,r
Σ̃ ′

ωϑ,r Σ̃ϑϑ,r

]
, Ω̃r =

[
Ω̃ωω,r Ω̃ωϑ,r

Ω̃ ′

ωϑ,r Ω̃ϑϑ,r

]
, Γ̃r =

[
Γ̃ωω,r Γ̃ωϑ,r
Γ̃ ′

ωϑ,r Γ̃ϑϑ,r

]
, J̃r =

[
J̃ωω,r J̃ωϑ,r
J̃ ′ωϑ,r J̃ϑϑ,r

]
.

Then, Ω̃ϑϑ,r , ũϑr,t , Γ̃ϑϑ,r , J̃ϑϑ,r and ṽϑr,t are the sample counterparts of Ωϑ , uϑ,t , Γϑ , Jϑ and vϑ,t , respectively. Since eϑ,t is
a martingale difference sequence, by (3.4) we can estimate Σϑ,r by

Σ̃ϑ,r = Ω̃−1
ϑϑ,r

[
1
n

n∑
t=1

ẽϑr,t ẽ′

ϑr,t

]
Ω̃−1
ϑϑ,r ,

where ẽϑr,t = Ũr ũϑr,t + Ṽϑ,r ṽϑr,t with Ṽϑ,r = (b̃τ ,rδ/r)Γ̃ϑϑ,r J̃−1
ϑϑ,r . Under the conditions of Theorem 3.1(ii)–(iii), we can

show that Σ̃ϑ,r = Σϑ,r + op(1) and Σ̃ϑϑ,r = Σ̃ϑ,r + op(1) for γ0 ≥ 0, which imply we can estimate Σϑ,r by Σ̃ϑϑ,r for
either γ0 < 0 or γ0 ≥ 0.

4. Strict stationarity and asymmetry tests

4.1. Testing for strict stationarity

Since the stationarity of model (1.1) is determined by the sign of γ0, it is interesting to consider the strict stationarity
testing problems as follows:

H0 : γ0 < 0 against H1 : γ0 ≥ 0, (4.1)

nd

H0 : γ0 ≥ 0 against H1 : γ0 < 0. (4.2)

n Francq and Zakoïan (2013a), a strict stationarity test based on the Gaussian QMLE is proposed. In this subsection, similar
o Francq and Zakoïan (2013a), we construct a strict stationarity test based on the GQMLE.

For any θ ∈ Θ , let ηt (θ ) = ϵt/σt (θ ) and

γn(θ ) =
1
n

n∑
t=1

log[α+(η+

t (θ ))
δ
+ α−(−η−

t (θ ))
δ
+ β].

Then, we can estimate γ0 by γ̃n,r = γn(θ̃n,r ). The following result shows the asymptotic distribution of γ̃n,r in both
stationary and nonstationary cases.

Corollary 4.1. Let ut = log(a0(ηt )) − γ0, σ 2
u = E(u2

t ) and a = (0, Eξ ′
t )

′. Then, under the conditions of Theorem 3.1,
√
n(γ̃n,r − γ0) →d N(0, σ 2

γ0
) as n → ∞, (4.3)

here

σ 2
γ0

=

{
σ 2
u + δ2κ2r{a′J−1a − (1 − E[

β0
a0(ηt )

])2}, as γ0 < 0,
σ 2
u , as γ0 ≥ 0.

The proof of Corollary 4.1 is omitted, since it is similar to the one in Francq and Zakoïan (2013a) except for some minor
odifications. Let η̃t,r = ηt (θ̃n,r ). Under the conditions of Corollary 4.1, σ 2

u can be consistently estimated by σ̃ 2
u,r , where

˜
2
u,r is the sample variance of {log[α̃n+,r (η̃+

t,r )δ + α̃n−,r (−η̃−

t,r )δ + β̃n,r ]}. Then, the test statistic

T̂r =
√
nγ̃n,r/σ̃u,r

1 For Ũr , we follow Silverman (1986) to estimate f (x0) by the Gaussian kernel density estimator f̃ (x0) =
∑n

t=1 Kh(T (η̃t,r ) − x0)/n with
Kh(x) = 1/(

√
2πh) exp{−x2/(2h2)} and the rule-of-thumb bandwidth h = 0.9n−1/5 min(s, R̃/1.34), where η̃t,r = ϵt/σt (θ̃n,r ), and s and R̃ are the

ample standard deviation and interquartile range of the transformed residuals {T (η̃ )}, respectively.
t,r
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able 2
he values of the pair (α0+, γ0) when α0− = 0.15 and β0 = 0.9.
δ = 2 δ = 1

ηt ∼ N(0, 1) ηt ∼ st5 ηt ∼ st3 ηt ∼ N(0, 1) ηt ∼ st5 ηt ∼ st3
α0+ γ0 α0+ γ0 α0+ γ0 α0+ γ0 α0+ γ0 α0+ γ0

0.05 −0.0104 0.05 −0.0152 0.05 −0.0226 0.05 −0.0233 0.05 −0.0261 0.05 −0.0286
0.07224697 0.0000 0.09206513 0.0000 0.1516561 0.0000 0.1083685 0.0000 0.1332366 0.0000 0.1830638 0.0000
0.2 0.0517 0.2 0.0330 0.2 0.0091 0.2 0.0337 0.2 0.0192 0.2 0.0034

asymptotically converges to N(0, 1) when γ0 = 0. For the testing problem (4.1) [or (4.2)], this leads us to consider the
ritical region

CST
= {T̂r > Φ−1(1 − α)} [or CNT

= {T̂r < Φ−1(α)}] (4.4)

at the asymptotic significance level α.

.2. Testing for asymmetry

Testing for the existence of asymmetry (or leverage) effect is important in many financial applications. For model (1.1),
his asymmetry testing problem is of the form

H0 : α0+ = α0− against H1 : α0+ ̸= α0−. (4.5)

n this subsection, we propose two tests for the hypotheses in (4.5). Let σ̃ ∗

S,r =

√
e′Σ̃∗

ϑϑ,re and σ̃S,r =

√
e′Σ̃ϑϑ,re with

= (1,−1, 0)′, where Σ̃ϑϑ,r defined before is a consistent estimator of the asymptotic variance of ϑ̂τn,r , and

Σ̃∗

ϑϑ,r =
δ2

r2
J̃−1
ϑϑ,r

[
1
n

n∑
t=1

ṽϑr,t ṽ
′

ϑr,t

]
J̃−1
ϑϑ,r .

y Lemmas A.1–A.4 and the similar argument as for Theorem 3.2 in Francq and Zakoïan (2013a), we can show that Σ̃∗

ϑϑ,r
s a consistent estimator of the asymptotic variance of ϑ̃n,r . With σ̃ ∗

S,r and σ̃S,r , our test statistics for asymmetry are defined
y

Ŝ1,r =

√
n(α̃n+,r − α̃n−,r )

σ̃ ∗

S,r
and Ŝ(τ )2,r =

√
n(α̂τn+,r − α̂τn−,r )

σ̃S,r
.

Note that Ŝ1,r is based on the GQMLE, and it aims to examine the asymmetric effect in model (1.1) globally, while Ŝ(τ )2,r
does this locally at a specific quantile level τ by using the quantile estimator. Under the conditions of Theorem 3.1, it
is straightforward to see that both Ŝ1,r and Ŝ(τ )2,r asymptotically converge to N(0, 1) under H0 in (4.5). Hence, the critical
region based on Ŝ1,r [or Ŝ(τ )2,r ] is

CS
= {|Ŝ1,r | > Φ−1(1 − α/2)} [or, CS

= {|Ŝ(τ )2,r | > Φ−1(1 − α/2)}] (4.6)

for the testing problem (4.5), and it has the asymptotic significance level α. Since α̃n±,r , α̂τn±,r , σ̃ ∗

S,r or σ̃S,r has the unified
asymptotics for both γ0 < 0 and γ0 ≥ 0, the tests Ŝ1,r and Ŝ(τ )2,r can be used in both cases. This is also the situation for the
asymmetry test in Francq and Zakoïan (2013a). We shall emphasize that unlike the Gaussian QMLE-based tests in Francq
and Zakoïan (2013a), our tests T̂r , Ŝ1,r and Ŝ(τ )2,r only require E|ηt |

2r < ∞, and they thus are valid for the very heavy-tailed ηt .

5. Simulation studies

5.1. Simulation studies for the quantile estimators

In this section, we assess the finite-sample performance of θ̂τn,r . We generate 1000 replications from the following
model

ϵt = h1/δ
t ηt , ht = 0.1 + α0+(ϵ+

t−1)
δ
+ 0.15(−ϵ−

t−1)
δ
+ 0.9ht−1, (5.1)

where ηt is taken as N(0, 1), the standardized Student’s t5 (st5) or the standardized Student’s t3 (st3) such that Eη2t = 1.
Here, we fix ω0 = 0.1, α0− = 0.15 and β0 = 0.9, and choose α0+ as in Table 2, where the values of α0+ correspond to
the cases of γ0 > 0, γ0 = 0, and γ0 < 0, respectively. For the power index δ (or the estimation indicator r), we choose it
to be 2 or 1. For the quantile level τ , we set it to be 0.05 or 0.1. Since each GQMLE has a different identification condition,
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θ
ˆτn,r has to be re-scaled for θτ0 in model (5.1), and it is defined as

θ̂τn,r =
(
ω̄τn,r , ᾱτn+,r , ᾱτn−,r , (E|ηt |

r )δ/r β̄τn,r
)′
,

where θn,r = (ω̄τn,r , ᾱτn+,r , ᾱτn−,r , β̄τn,r )′ is the hybrid quantile estimator calculated from the data sample, and the true
value of (E|ηt |

r )δ/r is used.
Tables 3 and 4 report the bias, the empirical standard deviation (ESD) and the asymptotic standard deviation (ASD) of

θ̂τn,r for the cases of δ = 2 and δ = 1, respectively. In this section, since the results for ηt ∼ st3 are similar, they are not
reported here for saving space. From Tables 3 and 4, our findings are as follows:

(a1) The biases of all parameters become small as the sample size n increases, except when γ0 ≥ 0, the estimators
of ω have relatively large biases as expected. For each distribution of ηt , the biases of θ̂τn,r with r = 1 (or τ = 0.1) are
generally smaller than those of θ̂τn,r with r = 2 (or τ = 0.05). For each estimator, its biases (in absolute value) in the
case of ηt ∼ st5 tend to be smaller than those in the case of ηt ∼ N(0, 1).

(a2) The ESDs and ASDs of the parameter ϑ are close in all cases, while the ESDs and ASDs of the parameter ω have a
relatively large disparity as expected. As the sample size n increases, the ESDs and ASDs of all parameters become small.
For each distribution of ηt , the ASDs of θ̂τn,r seem robust to the choices of r , and they become large as the value of τ
decreases. For each estimator, its ASDs in the case of ηt ∼ st5 are generally larger than those in the case of ηt ∼ N(0, 1),
except for δ = 2 and τ = 0.1.

Note that all of the aforementioned findings are invariant, regardless of the power index δ and the sign of γ0. In
summary, our quantile estimator θ̂τn,r has a good finite sample performance, which is robust to the choice of r . Particularly,
its performance tends to be even better, when ηt is more light-tailed or the value of τ is larger.

5.2. Simulation studies for the tests

In this subsection, we first assess the performance of the strict stationarity test T̂r . We generate 1000 replications from
model (5.1) with the same settings for δ and ηt , except that the values of α0+ are chosen as in Table 5. We apply T̂r with
r = 2 and 1 to both testing problems (4.1) and (4.2) at the significance level 5%, and obtain the following findings:

(b1) The size of T̂r is controlled by the level of 5% in general, though there is some over-sized risk for the testing
problem (4.2) when the sample size n is not large enough. This is also observed in Francq and Zakoïan (2012, 2013a)).

(b2) The power of T̂r is satisfactory, and it increases with the sample size n. Also, T̂r is more powerful when the tail of
ηt is thinner. But the choice of r has a negligible effect on the power of T̂r . This may be because the asymptotic variance
of γ̃n,r in (4.3) does not depend on r .

Next, we assess the performance of asymmetry tests Ŝ1,r and Ŝ(τ )2,r . As before, we generate 1000 replications from model
(5.1) with the same settings for δ and ηt , except that the values of α0+ are chosen to be {0.01, 0.03, . . . , 0.27, 0.29}. We
apply Ŝ1,r and Ŝ(τ )2,r (with τ = 0.05 and 0.1) to the testing problem (4.5) at the significance level 5%. Figs. 1 and 2 plot the
power of Ŝ1,r and Ŝ(τ )2,r for r = 1 with ηt ∼ N(0, 1) and st5, respectively. Since the results for r = 2 are similar, we do not
show them here for saving the space. Our findings are as follows:

(c1) All three tests have precise sizes even when n is not large.
(c2) The power of all three tests increases when the value of α0+ moves away from 0.15, and the global test Ŝ1,r is more

powerful than the two local tests Ŝ(τ )2,r . Both local tests Ŝ(τ )2,r are more powerful for δ = 1 than for δ = 2. When ηt ∼ N(0, 1),
Ŝ(τ )2,r with τ = 0.05 is more powerful than Ŝ(τ )2,r with τ = 0.1, while when ηt ∼ st5, the opposite conclusion is obtained.

Overall, all our proposed tests have a good performance especially for large n.

6. Applications

6.1. Stationary data

In this subsection, we re-analyze the daily log returns of two stock market indexes: the S&P 500 index and the Dow
30 index in Zheng et al. (2018). The data are observed on a daily basis from January 2, 2008 to June 30, 2016, with a
sample size n = 2139. Zheng et al. (2018) studied these two datasets by using the classical GARCH(1,1) model, whose
conditional quantile was estimated by the hybrid quantile estimator with the Gaussian QMLE as its first step estimator.
They found that the resulting method can produce better interval forecast than many existing ones. Since their GARCH(1,1)
model overlooks the often observed asymmetry effect in financial data, it is of interest to re-fit these two sequences by
model (1.1).

Based on model (1.1) with δ = 2 and 1, Table 6 gives the estimation results for both sequences. Here, we use the
GQMLE θ̃n,r with r = 2 and 1 in the first step estimation, and we consider the hybrid quantile estimators θ̃τn,r with
τ = 0.05 and 0.1 in the second step estimation. From this table, the estimates of α0+ are always much smaller than those
of α0− in magnitude, indicating that there is a strong asymmetric effect for both sequences. To look for more evidence,
we apply the asymmetry tests Ŝ1,r and Ŝ(τ )2,r to both sequences, and their corresponding p-values given in Table 6 confirm
the asymmetric phenomenon. We also consider the strict stationarity test T̂r for the testing problem (4.2) in Table 6, and
its p-values show strong evidence that both time series are strictly stationary.
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0

r = 1

α+ α− β ω α+ α− β

4 −0.41 −0.24 0.22 −0.93 −0.16 −0.32 0.16
3.14 2.65 2.35 6.10 3.13 2.80 2.45
3.09 2.77 2.41 4.76 3.18 2.85 2.53

5 −0.22 −0.11 −0.07 −1.41 −0.09 −0.10 0.03
2.27 2.01 1.70 6.47 2.20 2.01 1.69
2.27 2.02 1.73 5.21 2.28 2.04 1.79

0 −0.75 −0.63 0.08 −3.32 −0.43 −0.58 0.15
3.96 3.18 2.89 18.6 4.12 3.31 2.64
3.60 3.18 2.83 6.47 3.55 3.17 2.63

7 −0.56 −0.44 0.07 −3.24 −0.35 −0.29 0.04
2.81 2.51 2.03 13.8 2.83 2.36 1.82
2.70 2.35 2.04 6.74 2.70 2.39 1.93

8 −0.25 −0.18 0.12 −0.86 −0.17 −0.09 −0.10
1.97 1.71 1.53 3.69 2.00 1.73 1.53
2.00 1.79 1.55 3.95 2.00 1.79 1.55

4 −0.14 −0.08 0.07 −0.97 −0.11 −0.04 0.06
1.39 1.21 1.09 3.86 1.41 1.22 1.11
1.42 1.28 1.10 3.94 1.42 1.28 1.10

6 −0.34 −0.39 −0.05 −1.96 −0.24 −0.23 0.04
1.95 1.67 1.56 7.47 1.93 1.63 1.40
1.90 1.67 1.51 4.14 1.88 1.64 1.35

6 −0.22 −0.19 0.03 2.13 −0.03 −0.11 −0.01
1.35 1.14 1.06 7.76 1.33 1.19 0.10
1.37 1.20 1.08 4.39 1.35 1.20 0.97
Table 3
Summary for θ̂τn,r (×10) when δ = 2.
ηt n γ0 < 0 γ0 = 0 γ0 >

r = 2 r = 1 r = 2 r = 1 r = 2

ω α+ α− β ω α+ α− β ω α+ α− β ω α+ α− β ω

Panel A: τ = 0.05

N(0, 1) 1000 Bias −1.36 −0.68 −0.36 0.62 −1.29 −0.55 −0.28 0.40 −1.17 −0.51 −0.37 0.36 −0.72 −0.52 −0.34 0.48 −1.7
ESD 5.63 1.81 2.72 2.33 6.20 1.82 2.88 2.49 5.45 1.99 2.74 2.23 5.66 2.11 2.88 2.42 6.33
ASD 3.99 2.11 2.78 2.43 4.30 2.14 2.80 2.54 3.88 2.25 2.75 2.34 4.26 2.32 2.84 2.45 5.34

2000 Bias −1.08 −0.37 −0.12 0.29 −1.35 −0.24 −0.14 0.25 −1.32 −0.24 −0.13 0.14 −0.66 −0.21 −0.05 −0.15 −1.6
ESD 4.76 1.31 2.01 1.69 5.33 1.35 2.08 1.81 5.96 1.48 1.95 1.63 4.94 1.55 1.98 1.67 6.01
ASD 3.97 1.56 2.02 1.76 4.24 1.55 2.04 1.83 4.55 1.67 2.03 1.70 4.40 1.65 1.99 1.72 5.05

st5 1000 Bias −1.72 −0.84 −0.70 0.60 −1.57 −0.88 −0.35 0.53 −3.28 −0.85 −0.82 0.17 −2.69 −0.57 −0.60 0.37 −4.7
ESD 7.72 2.26 3.53 3.18 6.92 2.43 3.40 2.78 10.9 2.92 3.34 2.72 10.9 2.76 3.43 2.63 21.9
ASD 5.75 2.18 3.34 3.15 5.05 2.20 3.17 2.89 6.51 2.69 3.23 2.84 5.92 2.64 3.28 2.72 7.35

2000 Bias −1.35 −0.46 −0.33 0.39 −1.71 −0.40 −0.18 0.35 −3.12 −0.57 −0.35 0.12 −1.99 −0.39 −0.19 0.15 −5.3
ESD 6.03 1.51 2.40 2.27 5.79 1.64 2.37 2.05 13.2 2.05 2.27 1.96 10.7 2.06 2.28 1.81 28.1
ASD 5.56 1.59 2.36 2.29 4.75 1.59 2.34 2.11 6.11 1.97 2.35 2.02 5.19 1.95 2.36 1.89 7.54

Panel B: τ = 0.1

N(0, 1) 1000 Bias −0.84 −0.45 −0.25 0.36 −0.62 −0.38 −0.18 0.32 −1.10 −0.47 −0.35 0.28 −0.87 −0.40 −0.25 0.26 −1.1
ESD 3.42 1.15 1.67 1.56 3.29 1.17 1.69 1.57 3.71 1.31 1.72 1.40 3.68 1.33 1.75 1.41 3.79
ASD 3.05 1.38 1.80 1.58 3.03 1.38 1.80 1.58 3.32 1.51 1.82 1.54 3.35 1.50 1.81 1.54 3.91

2000 Bias −0.85 −0.25 −0.16 0.28 −0.64 −0.21 −0.11 0.25 −0.87 −0.16 −0.14 0.09 −0.62 −0.12 −0.10 0.07 −1.3
ESD 3.10 0.87 1.27 1.08 3.04 0.87 1.27 1.07 3.36 0.95 1.30 1.05 3.19 0.95 1.30 1.06 3.96
ASD 2.83 0.10 1.30 1.13 2.83 0.99 1.30 1.13 3.05 1.06 1.29 1.08 3.04 1.06 1.29 1.08 3.94

st5 1000 Bias −1.62 −0.43 −0.29 0.31 −1.36 −0.33 −0.16 0.34 −1.65 −0.50 −0.36 0.06 −1.32 −0.39 −0.22 0.12 −2.6
ESD 4.42 1.03 1.55 1.68 4.38 1.00 1.54 1.52 4.57 1.41 1.56 1.47 4.60 1.38 1.55 1.31 8.28
ASD 3.21 1.15 1.67 1.62 2.95 1.13 1.65 1.47 3.56 1.41 1.67 1.49 3.31 1.40 1.66 1.35 4.27

2000 Bias −1.09 −0.23 −0.20 0.19 −0.85 −0.18 −0.11 0.19 −1.72 −0.19 −0.17 0.05 −1.20 −0.12 −0.21 0.06 −2.8
ESD 3.05 0.75 1.23 1.19 3.02 0.79 1.26 1.05 6.24 0.98 1.17 1.07 4.19 0.94 1.19 0.98 8.59
ASD 2.94 0.82 1.22 1.20 2.70 0.82 1.21 1.09 3.70 0.10 1.21 1.07 3.29 0.99 1.21 0.96 4.25
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0 > 0

= 2 r = 1

α+ α− β ω α+ α− β

0.85 −0.40 −0.41 0.29 −0.57 −0.25 −0.23 0.23
.87 1.38 1.26 0.95 1.93 1.39 1.22 0.96
.01 1.43 1.36 1.00 1.97 1.41 1.35 1.01
0.75 −0.20 −0.20 0.16 −0.50 −0.12 −0.16 0.14
.94 1.04 0.93 0.69 1.76 1.02 0.93 0.72
.82 1.02 0.97 0.71 1.84 1.01 0.97 0.72
1.23 −0.55 −0.52 0.23 −1.00 −0.24 −0.40 0.21
.82 1.66 1.56 1.08 3.05 1.65 1.48 1.09
.53 1.78 1.66 1.18 2.27 1.71 1.63 1.12
1.37 −0.23 −0.27 0.12 −0.88 −0.23 −0.26 0.14
.85 1.21 1.11 0.82 2.85 1.25 1.16 0.81
.64 1.26 1.19 0.84 2.25 1.26 1.19 0.81

0.59 −0.29 −0.29 0.20 −0.45 −0.18 −0.25 0.19
.40 1.07 1.04 0.76 1.47 1.12 1.01 0.79
.82 1.19 1.13 0.83 1.77 1.18 1.13 0.83
0.58 −0.12 −0.11 0.08 −0.41 −0.09 −0.07 0.06
.43 0.82 0.76 0.57 1.43 0.81 0.76 0.57
.83 0.84 0.81 0.59 1.74 0.84 0.81 0.59
0.87 −0.35 −0.38 0.16 −0.72 −0.19 −0.27 0.13
.81 1.15 1.07 0.80 2.18 1.17 1.08 0.76
.03 1.23 1.17 0.84 1.86 1.22 1.16 0.79
0.79 −0.19 −0.17 0.07 −0.52 −0.13 −0.11 0.07
.69 0.88 0.75 0.60 1.65 0.83 0.81 0.53
.96 0.88 0.83 0.60 1.81 0.88 0.83 0.56
Table 4
Summary for θ̂τn,r (×10) when δ = 1.
ηt n γ0 < 0 γ0 = 0 γ

r = 2 r = 1 r = 2 r = 1 r

ω α+ α− β ω α+ α− β ω α+ α− β ω α+ α− β ω

Panel A: τ = 0.05

N(0, 1) 1000 Bias −0.32 −0.67 −0.56 0.55 −0.11 −0.59 −0.44 0.45 −0.38 −0.55 −0.51 0.41 −0.31 −0.44 −0.39 0.35 −

ESD 1.53 0.93 1.23 0.96 1.51 0.93 1.25 0.95 1.53 1.08 1.29 0.87 1.63 1.12 1.24 0.91 1
ASD 1.28 1.23 1.36 1.00 1.33 1.22 1.36 1.02 1.49 1.30 1.35 0.97 1.60 1.29 1.36 0.99 2

2000 Bias −0.46 −0.40 −0.32 −0.39 −0.28 −0.39 −0.29 0.34 −0.45 −0.26 −0.21 0.21 −0.37 −0.20 −0.19 0.16 −

ESD 1.76 0.69 0.91 0.78 1.65 0.74 0.94 0.79 1.52 0.84 0.89 0.64 1.66 0.82 0.93 0.68 1
ASD 1.28 0.88 0.98 0.76 1.29 0.88 0.98 0.77 1.51 0.93 0.97 0.70 1.50 0.93 0.97 0.71 1

st5 1000 Bias −0.69 −0.87 −0.66 0.62 −0.47 −0.64 −0.50 0.51 −1.14 −0.60 −0.61 0.31 −0.74 −0.56 −0.55 0.34 −

ESD 2.34 1.14 1.55 1.32 2.46 1.20 1.56 1.34 2.76 1.51 1.54 1.09 2.79 1.57 1.53 1.07 2
ASD 1.71 1.46 1.67 1.24 1.73 1.43 1.66 1.22 2.09 1.61 1.65 1.16 2.06 1.61 1.65 1.12 2

2000 Bias −0.81 −0.49 −0.38 0.48 −0.61 −0.40 −0.29 0.42 −0.97 −0.28 −0.34 0.16 −0.83 −0.22 −0.24 0.17 −

ESD 2.24 0.84 1.14 1.11 2.25 0.86 1.14 1.03 2.42 1.09 1.14 0.82 2.79 1.13 1.19 0.77 2
ASD 1.70 1.04 1.20 0.97 1.68 1.04 1.19 0.94 2.17 1.16 1.19 0.84 2.10 1.16 1.19 0.80 2

Panel B: τ = 0.1

N(0, 1) 1000 Bias −0.17 −0.48 −0.43 0.37 −0.07 −0.40 −0.29 0.28 −0.33 −0.37 −0.32 0.30 −0.17 0.25 −0.24 0.18 −

ESD 1.31 0.78 1.05 0.81 1.26 0.74 1.05 0.79 1.24 0.92 1.00 0.71 1.20 0.90 1.00 0.72 1
ASD 1.28 1.02 1.14 0.86 1.23 1.02 1.13 0.85 1.44 1.07 1.13 0.81 1.42 1.08 1.13 0.82 1

2000 Bias −0.26 −0.26 −0.21 0.24 −0.11 −0.22 −0.21 0.17 −0.40 −0.20 −0.22 0.16 −0.33 −0.14 −0.11 0.11 −

ESD 1.30 0.57 0.76 0.63 1.19 0.57 0.78 0.62 1.27 0.69 0.74 0.53 1.27 0.70 0.72 0.54 1
ASD 1.25 0.73 0.81 0.65 1.22 0.73 0.81 0.65 1.52 0.77 0.81 0.58 1.43 0.77 0.80 0.58 1

st5 1000 Bias −0.44 −0.49 −0.46 0.36 −0.21 −0.42 −0.30 0.31 −0.57 −0.41 −0.41 0.24 −0.51 −0.27 −0.30 0.19 −

ESD 1.59 0.78 1.09 0.96 1.40 0.81 1.07 0.86 1.61 1.03 1.09 0.80 1.62 1.01 1.06 0.72 1
ASD 1.43 1.02 1.18 0.92 1.34 1.01 1.17 0.86 1.66 1.14 1.16 0.83 1.63 1.12 1.16 0.78 2

2000 Bias −0.43 −0.24 −0.20 0.23 −0.33 −0.27 −0.21 0.23 −0.63 −0.17 −0.20 0.08 −0.48 −0.16 −0.15 0.10 −

ESD 1.45 0.57 0.81 0.75 1.48 0.63 0.84 0.72 1.67 0.75 0.82 0.58 1.53 0.79 0.79 0.53 1
ASD 1.43 0.73 0.84 0.74 1.30 0.73 0.83 0.68 1.64 0.81 0.83 0.59 1.61 0.81 0.83 0.56 1
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Table 5
Power (×100) of T̂r at the significance level 5%.
Panel A: δ = 2

ηt H0 r n α0+

0.01 0.03 0.05 0.07224697 0.09 0.11 0.13

N(0, 1) (4.1) 2 1000 0.0 0.0 0.0 7.6 53.7 96.8 99.8
2000 0.0 0.0 0.0 6.3 80.4 100 100
4000 0.0 0.0 0.0 5.8 97.3 100 100

1 1000 0.0 0.0 0.0 6.4 54.0 96.2 100
2000 0.0 0.0 0.0 5.4 79.3 100 100
4000 0.0 0.0 0.0 5.0 96.9 100 100

(4.2) 2 1000 100 99.3 78.1 14.1 0.6 0.0 0.6
2000 100 100 93.7 11.5 9.4 0.0 0.0
4000 100 100 99.8 10.2 0.0 0.0 0.0

1 1000 100 98.5 77.3 16.7 0.5 0.0 0.0
2000 100 100 93.7 13.8 0.0 0.0 0.0
4000 100 100 99.6 8.4 0.0 0.0 0.0

ηt H0 r n α0+

0.03 0.05 0.07 0.09206513 0.11 0.13 0.15

st5 (4.1) 2 1000 0.0 0.0 0.5 6.3 35.0 76.9 96.3
2000 0.0 0.0 0.0 5.6 52.9 95.1 99.9
4000 0.0 0.0 0.0 5.3 78.2 99.0 100

1 1000 0.0 0.0 0.1 6.3 34.6 74.5 95.4
2000 0.0 0.0 0.0 5.8 54.8 95.3 100
4000 0.0 0.0 0.0 5.1 73.5 99.8 100

(4.2) 2 1000 98.8 90.7 58.5 17.9 3.6 0.5 0.0
2000 100 98.3 75.4 13.7 0.8 0.0 0.0
4000 100 100 92.3 12.7 0.1 0.0 0.0

1 1000 99.6 99.3 60.9 16.7 1.9 0.1 0.0
2000 100 99.5 79.1 13.9 0.4 0.0 0.0
4000 100 99.9 94.3 10.0 0.0 0.0 0.0

Panel B: δ = 1

ηt H0 r n α0+

0.05 0.07 0.09 0.1083685 0.13 0.15 0.17

N(0, 1) (4.1) 2 1000 0.0 0.0 0.0 6.8 94.1 100 100
2000 0.0 0.0 0.0 5.5 99.6 100 100
4000 0.0 0.0 0.0 4.8 100 100 100

1 1000 0.0 0.0 0.0 7.2 93.8 100 100
2000 0.0 0.0 0.0 5.8 99.8 100 100
4000 0.0 0.0 0.0 5.1 100 100 100

(4.2) 2 1000 100 99.9 89.5 10.8 0.1 0.0 0.0
2000 100 100 99.0 9.9 0.0 0.0 0.0
4000 100 100 100 7.7 0.0 0.0 0.0

1 1000 100 100 90.5 11.9 0.0 0.0 0.0
2000 100 100 99.2 10.2 0.0 0.0 0.0
4000 100 100 100 7.9 0.0 0.0 0.0

ηt H0 r n α0+

0.07 0.09 0.11 0.1332366 0.15 0.17 0.19

st5 (4.1) 2 1000 0.0 0.0 0.0 8.3 62.9 98.6 100
2000 0.0 0.0 0.0 7.4 84.4 100 100
4000 0.0 0.0 0.0 5.6 99.0 100 100

1 1000 0.0 0.0 0.0 7.4 63.5 98.8 100
2000 0.0 0.0 0.0 6.3 86.8 100 100
4000 0.0 0.0 0.0 4.5 99.2 100 100

(4.2) 2 1000 99.9 99.5 83.9 12.6 0.4 0.0 0.0
2000 100 100 97.9 11.1 0.0 0.0 0.0
4000 100 100 100 10.1 0.0 0.0 0.0

1 1000 100 99.7 88.0 14.9 0.4 0.0 0.0
2000 100 100 98.7 11.8 0.0 0.0 0.0
4000 100 100 99.9 9.0 0.0 0.0 0.0

† The size of T̂r is in boldface.

Next, we calculate the interval forecast of each sequence by the following expanding window procedure: first conduct
he estimation using the data from January 2, 2008 to December 31, 2010 and compute the conditional quantile forecast
or the next trading day, i.e., the forecast of Qτ (ϵn+1|Fn); then, advance the forecasting origin by one to include one more
observation in the estimation subsample, and repeat the foregoing procedure until the end of the sample is reached.
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Fig. 1. The power for the asymmetric tests Ŝ1,r (dashed line), Ŝ(τ1)2,r (solid line), and Ŝ(τ2)2,r (solid and dotted line). Here, r = 1, τ1 = 0.05, τ2 = 0.1,
nd ηt ∼ N(0, 1).

Fig. 2. The power for the asymmetric tests Ŝ1,r (dashed line), Ŝ(τ1)2,r (solid line), and Ŝ(τ2)2,r (solid and dotted line). Here, r = 1, τ1 = 0.05, τ2 = 0.1,
nd ηt ∼ st5 .

Moreover, we evaluate the forecasting performance of the aforementioned interval forecasts by using the following
wo measures:

(i) the minimum of the p-values of the two VaR backtests, the likelihood ratio test for correct conditional converge
CC) in Christoffersen (1998) and the dynamic quantile (DQ) test2 in Engle and Manganelli (2004);

(ii) the empirical coverage error is defined as the proportion of observations that exceed the corresponding VaR forecast
inus the corresponding nominal level τ .
The reason for selecting the smaller of the two p-values is that the CC and DQ tests have different null hypotheses and

ence are complementary to each other. Note that a larger p-value of either CC or DQ test gives a stronger evidence of
ood interval forecasts.
Based on model (1.1) with δ = 2 and 1, Table 7 reports the results of two measures at the lower (L) (or upper(U))

.01th, 0.025th and 0.05th conditional quantiles. Here, the GQMLE θ̃n,r with r = 2 and 1 is used in the first step estimation.
s a comparison, the results for the benchmark method (i.e., δ = 2, r = 2 and α0+ = α0−) in Zheng et al. (2018) are
lso included in Table 7. It can be seen that all methods have a poor performance for the lower conditional quantiles,
hile our proposed methods, based on the asymmetric model (1.1) together with the hybrid quantile estimation, have a
ignificantly better interval forecasting performance for the upper conditional quantiles than the benchmark method in
heng et al. (2018). The poor performance of the lower conditional quantiles from our method may be because our GQMLE

˜n,r does not account for the asymmetry of ηt . We may expect to improve our forecasting performance particularly for the
ower conditional quantiles by using a skewed distribution of ηt to form our first estimation, and we leave this desired
irection for future study. In terms of the minimum of the p-values of the two VaR backtests, our proposed methods with
= 2 are better than those with δ = 1 in four out of six cases,3 while the choice of r seems irrelevant to the forecasting
erformance. In terms of the empirical coverage error, our proposed methods with δ = 2 (or r = 1) are better than those

2 As in Zheng et al. (2018), the regression matrix contains four lagged hits and the contemporaneous VaR estimate for DQ test.
3 Only consider the cases that the minimum of the p-values of two backtests is larger than 5%.
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Table 6
The estimation and testing results for the S&P 500 and Dow 30 returns.

δ = 2 δ = 1

r = 2 r = 1 r = 2 r = 1

Panel A: S&P 500

ω 4e−6 (9e−7) 2e−6 (4e−7) 7e−4 (1e−4) 3e−4 (5e−5)
α+ 1e−7 (0.021) 4e−6 (0.011) 7e−6 (0.035) 1e−4 (0.017)
α− 0.261 (0.036) 0.156 (0.018) 0.302 (0.043) 0.205 (0.019)
β 0.848 (0.025) 0.850 (0.018) 0.835 (0.031) 0.862 (0.018)

ωτ1 −1e−5 (2e−5) −1e−5 (2e−5) −1e−3 (1e−3) −9e−4 (1e−3)
ατ1+ −4e−7 (0.214) −2e−5 (0.182) −1e−5 (0.111) −4e−4 (0.113)
ατ1− −0.812 (0.357) −0.872 (0.308) −0.517 (0.111) −0.476 (0.113)
βτ1 −2.641 (0.004) −4.689 (0.003) −1.428 (0.172) −2.002 (0.230)

ωτ2 −6e−6 (7e−6) −5e−6 (8e−6) −8e−4 (9e−4) 0.001 (9e−4)
ατ2+ −2e−7 (0.089) −1e−5 (0.098) −9e−6 (0.086) −0.002 (0.082)
ατ2− −0.431 (0.143) −0.456 (0.160) −0.388 (0.093) −0.175 (0.088)
βτ2 −1.403 (0.002) −2.454 (0.002) −1.072 (0.130) −1.486 (0.154)

T̂r 1e−21 8e−14 7e−83 3e−51
Ŝ1,r 1e−13 1e−10 6e−15 7e−13
Ŝ(τ1)2,r 0.023 0.006 5e−6 4e−5
Ŝ(τ2)2,r 0.004 0.006 2e−5 0.030

Panel B: Dow 30

ω 3e−6 (7e−7) 2e−6 (3e−7) 6e−4 (1e−4) 3e−4 (5e−5)
α+ 4e−10 (0.019) 1e−8 (0.010) 2e−5 (0.029) 1e−5 (0.016)
α− 0.258 (0.035) 0.160 (0.018) 0.203 (0.037) 0.205 (0.019)
β 0.852 (0.021) 0.852 (0.018) 0.839 (0.027) 0.863 (0.017)

ωτ1 −1e−5 (9e−6) −8e−6 (9e−6) −1e−3 (0.001) −9e−4 (1e−3)
ατ1+ −1e−9 (0.156) −5e−8 (0.158) −4e−5 (0.114) −2e−4 (0.122)
ατ1− −0.784 (0.232) −0.862 (0.218) −0.501 (0.114) −0.474 (0.119)
βτ1 −2.590 (0.002) −4.599 (0.002) −1.447 (0.172) −2.015 (0.230)

ωτ2 −5e−6 (6e−6) −4e−6 (6e−6) −8e−4 (9e−4) −9e−4 (8e−4)
ατ2+ −7e−10 (0.095) −3e−8 (0.099) −3e−5 (0.090) −5e−3 (0.088)
ατ2− −0.427 (0.154) −0.462 (0.166) −0.377 (0.098) −0.141 (0.095)
βτ2 −1.411 (0.002) −2.465 (0.002) −1.087 (0.133) −1.504 (0.159)

T̂r 5e−20 8e−14 1e−83 2e−51
Ŝ1,r 1e−15 2e−10 5e−15 7e−13
Ŝ(τ1)2,r 0.002 5e−4 7e−6 8e−5
Ŝ(τ2)2,r 0.008 0.007 1e−4 0.087

† Note that τ1 = 0.05 and τ2 = 0.1.
‡ The standard deviations of all estimators are given in parentheses, and the p-values of all tests are
given.

with δ = 1 (or r = 2) in general. Overall, our method with δ = 2, r = 2 and α0+ ̸= α0− has the best interval forecasting
erformance for both data.

.2. Non-stationary data

In this subsection, we re-visit three daily stock return data sequences of Community Bankers Trust (BTC), China
ediaExpress (CCME) and Monarch Community Bancorp (MCBF) in Francq and Zakoïan (2012, 2013a). These three
equences are shown to be non-stationary in Francq and Zakoïan (2012), while their conditional quantile estimators have
ot been investigated. Motivated by this, we study their conditional quantiles by our hybrid quantile estimation method.
o compute our hybrid quantile estimator, we choose the GQMLE θ̃n,r with r = 1 in the first estimation step. Here, we

do not consider the GQMLE θ̃n,r with r = 2, since Li et al. (2018) demonstrated the innovations of the fitted GARCH(1,1)
model for each sequence only have a finite second moment but not an infinite fourth moment. In the second step of
quantile estimation, we consider the hybrid quantile estimators θ̂τn,1 at levels τ = 0.05 and 0.1. Table 8 reports the
results of θ̃n,1 and θ̂τn,1 for each sequence, together with the results of T̂1 for the testing problem (4.2). From the results
of T̂1, we can reach the same conclusion as in Francq and Zakoïan (2012) that all three data are non-stationary, and hence
the estimates for the drift term ω or ωτ may not be consistent. Meanwhile, Table 8 reports the results of Ŝ1,1, Ŝ

(0.05)
2,1 and

Ŝ(0.1)2,1 for the testing problem (4.5). It is interesting to observe that the global asymmetry test Ŝ1,1 as the one in Francq and
Zakoïan (2013a) indicates that all three datasets do not have the asymmetric effect, while the local asymmetry tests Ŝ(0.05)2,1

and Ŝ(0.1) detect some strong asymmetric effects in model (1.1) with δ = 2 or 1 for the CCME and MCBF data. Although
2,1
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Table 7
Minimum p-values of two VaR backtests and empirical coverage errors for the S&P 500 and Dow 30 returns at the lower (L) (or upper (U)) 0.01th,
0.025th, and 0.05th conditional quantiles.

τ Minimum p-value of VaR backtests Empirical coverage error

δ = 2 δ = 1 δ = 2 δ = 1

r = 2 r = 2

α0+ = α0− α0+ ̸= α0− r = 1 r = 2 r = 1 α0+ = α0− α0+ ̸= α0− r = 1 r = 2 r = 1

S&P 500 L1.0 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0002 −0.0069 −0.0069 −0.0088 −0.0076
L2.5 0.0001 0.0000 0.0000 0.0000 0.0000 −0.0048 −0.0226 −0.0195 −0.0183 −0.0183
L5.0 0.0170 0.0000 0.0000 0.0000 0.0000 −0.0090 −0.0427 −0.0378 −0.0323 −0.0255
U5.0 0.2450 0.6996 0.6304 0.4846 0.2401 0.0054 0.0041 0.0023 0.0047 0.0011
U2.5 0.3560 0.7142 0.7616 0.1476 0.2807 0.0030 0.0030 0.0011 0.0060 0.0048
U1.0 0.2750 0.8504 0.2956 0.8213 0.6206 0.0008 0.0002 −0.0028 0.0008 0.0020

Dow 30 L1.0 0.0630 0.0000 0.0000 0.0000 0.0000 −0.0014 −0.0076 −0.0027 −0.0088 −0.0076
L2.5 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0054 −0.0249 −0.0201 −0.0213 −0.0213
L5.0 0.0000 0.0000 0.0000 0.000 0.0000 −0.0072 −0.0433 −0.0420 −0.0329 −0.0286
U5.0 0.2730 0.1678 0.2304 0.1842 0.2798 0.0084 0.0072 0.0035 0.0060 0.0023
U2.5 0.5680 0.3493 0.3723 0.6350 0.3723 0.0011 0.0024 0.0005 0.0011 0.0001
U1.0 0.4180 0.8256 0.8256 0.1296 0.0002 −0.0028 −0.0004 −0.0004 0.0045 0.0020

† Among the models with p-values > 5%, the largest p-value and the smallest empirical coverage error (in absolute value) are in boldface.

Table 8
The estimation and testing results for the BTC, CCME and MCBF returns.

Panel A: BTC Panel B: CCME Panel C: MCBF

δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 δ = 1

ω 8e−7 (7e−8) 1e−4 (1e−4) 2e−8 (2e−8) 1e−4 (2e−5) 8e−6 (4e−6) 8e−4 (3e−4)
α+ 0.089 (0.035) 0.130 (0.040) 0.107 (0.047) 0.148 (0.048) 0.033 (0.016) 0.078 (0.003)
α− 0.119 (0.038) 0.172 (0.041) 0.125 (0.063) 0.161 (0.056) 0.029 (0.014) 0.078 (0.028)
β 0.840 (0.031) 0.854 (0.027) 0.838 (0.043) 0.860 (0.033) 0.931 (0.019) 0.902 (0.024)

ωτ1 −5e−7 (1e−6) −9e−4 (4e−4) −1e−9 (6e−7) −1e−7 (3e−4) −2e−7 (1e−4) −9e−4 (0.005)
ατ1+ −0.448 (0.229) −0.320 (0.211) −0.639 (0.421) −0.498 (0.295) −1.515 (0.221) −0.479 (0.346)
ατ1− −0.661 (0.215) −0.423 (0.182) −1.879 (0.504) −0.846 (0.298) −1e−4 (0.086) −0.009 (0.144)
βτ1 −4.660 (1e−4) −2.097 (0.060) −3.190 (1e−4) −1.772 (0.032) −4.625 (0.009) −2.037 (0.263)

ωτ2 −8e−8 (7e−7) −2e−7 (3e−4) −4e−13 (2e−7) −3e−8 (2e−4) −1e−8 (9e−5) −1e−4 (0.003)
ατ2+ −0.348 (0.211) −0.153 (0.140) −0.364 (0.268) −0.404 (0.191) −0.596 (0.229) −0.314 (0.173)
ατ2− −0.198 (0.178) −0.113 (0.106) −0.741 (0.267) −0.792 (0.182) −2e−5 (0.088) 0.005 (0.095)
βτ2 −2.232 (1e−4) −1.522 (0.004) −1.450 (1e−4) −0.948 (0.021) −2.438 (0.008) −1.534 (0.151)

T̂r 0.397 0.966 0.145 0.577 0.894 0.143
Ŝ1,r 0.222 0.208 0.409 0.424 0.429 0.499
Ŝ(τ1)2,r 0.257 0.359 0.032 0.210 1e−4 0.063
Ŝ(τ2)2,r 0.298 0.411 0.164 0.076 0.008 0.035

† Note that r = 1, τ1 = 0.05 and τ2 = 0.1.
‡ The standard deviations of all estimators are given in parentheses, and the p-values of all tests are given.

none of the considered tests can find the asymmetric evidence for the BTC data, we think the examined BTC data still
have the asymmetric effect, since our forecasting comparison below indicates that the asymmetric PGARCH model can
perform better than its symmetric counterpart.

Next, we compute the interval forecasts for each sequence by using the same procedure as in Section 6.1, except
that the first interval forecast is calculated based on the first half of sample. Again, we follow the measurements as
in Section 6.1 to evaluate the interval forecasting performance of our methods, based on model (1.1) with the hybrid
quantile estimators. Table 9 reports the corresponding results for all three datasets. As a comparison, the forecasting
performance of the benchmark GARCH(1,1) model (i.e., δ = 2 and α0+ = α0−) estimated by the Laplacian QMLE θ̃n,1 is
also given in Table 9. It can be seen that, in terms of minimum p-values of two VaR backtests, model (1.1) with δ = 1
(or δ = 2 and α0+ ̸= α0−) can provide us with a good interval forecast in 6 cases, while the benchmark GARCH(1,1)
model can only do this in one case. Similar conclusions can be obtained in terms of empirical coverage error. Particularly,
our forecasting results indicate that the BTC data have the asymmetric effect, which, however, has not been detected by
our considered tests in Table 8. Note that there are 7 cases (most of them are for the CCME data) in which none of the
methods can deliver a satisfactory interval forecast, and these cases may require some new methods for their interval
forecast.
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Table 9
Minimum p-values of two VaR backtests and empirical coverage errors for the BTC, CCME and MCBF returns at the
lower (L) (or upper (U)) 0.01th, 0.025th, and 0.05th conditional quantiles.

τ Minimum p-value of VaR backtests Empirical coverage error

δ = 2 δ = 2

α0+ = α0− α0+ ̸= α0− δ = 1 α0+ = α0− α0+ ̸= α0− δ = 1

BTC L1.0 0.0025 0.3999 0.9329 −0.0100 −0.0056 −0.0012
L2.5 0.0000 0.0025 0.3335 −0.0250 −0.0206 −0.0096
L5.0 0.0000 0.0000 0.0031 −0.0302 −0.0478 −0.0302
U5.0 0.0299 0.1265 0.0182 0.0500 0.0170 0.0192
U2.5 0.0003 0.6372 0.0877 0.0228 0.0052 0.0008
U1.0 0.1296 0.8130 0.2569 0.0038 −0.0010 −0.0032

CCME L1.0 0.0301 0.9574 0.9574 −0.0100 −0.0015 −0.0015
L2.5 0.0006 0.0001 0.0000 −0.0250 −0.0165 −0.0165
L5.0 0.0000 0.0000 0.0000 −0.0500 −0.0415 −0.0415
U5.0 0.0002 0.0000 0.0080 0.0457 0.0457 0.0372
U2.5 0.0433 0.0006 0.0006 0.0207 0.0250 0.0250
U1.0 0.6077 0.6077 0.0301 0.0057 0.0057 0.0100

MCBF L1.0 0.0031 0.0031 0.0031 −0.0100 −0.0100 −0.0100
L2.5 0.0038 0.2131 0.4400 −0.0204 −0.0112 0.0050
L5.0 0.0023 0.1220 0.1682 −0.0316 −0.0177 −0.0131
U5.0 0.0067 0.0023 0.0001 0.0200 0.0316 −0.0030
U2.5 0.0005 0.7622 0.0001 0.0227 0.0020 −0.0188
U1.0 0.0031 0.0000 0.7747 0.0100 0.0008 0.0031

† Among the models with p-values > 5%, the largest p-value and the smallest empirical coverage error (in absolute
value) are in boldface.

7. Conclusions

In this paper, the hybrid quantile estimators are proposed for the asymmetric PGARCH models via the transformation
T (x) = |x|δsgn(x). Asymptotic normality for the quantile estimators is established under both stationarity and non-
stationarity. As a result, tests for strict stationarity and asymmetry are obtained. It is hoped these results will add to
the tool kits of time series analysis.
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Appendix. Proofs

To facilitate our proofs, we first introduce some notations. Let Θ0 = {θ ∈ Θ : β < eγ0} and Θp = {θ ∈ R4
+

: β <

1/a0(ηt )∥−1
p }. Define four [0,∞]-valued processes

vt (ϑ) =

∞∑
j=1

{α+(η+

t−j)
δ
+ α−(−η−

t−j)
δ
}

a0(ηt−j)

j−1∏
k=1

β

a0(ηt−k)
,

dα+

t (ϑ) =

∞∑
j=1

(η+

t−j)
δ

a0(ηt−j)

j−1∏
k=1

β

a0(ηt−k)
, dα−

t (ϑ) =

∞∑
j=1

(−η−

t−j)
δ

a0(ηt−j)

j−1∏
k=1

β

a0(ηt−k)
,

dβt (ϑ) =

∞∑
j=2

(j − 1){α+(η+

t−j)
δ
+ α−(−η−

t−j)
δ
}

βa0(ηt−j)

j−1∏
k=1

β

a0(ηt−k)

ith the convention
∏j−1

k=1 = 1 when j ≤ 1. As shown in Francq and Zakoïan (2013a), vt (ϑ), 1/vt (ϑ), d
α+

t (ϑ), dα−

t (ϑ) and
dβ (ϑ) have moments of any order.
t
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Θ

c
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Second, we give six technical lemmas. Lemmas A.1–A.2 from Francq and Zakoïan (2013a) show that, after being
ormalized by ht , the nonstationary process σ δt (θ ) and its first derivatives can be well approximated by some stationary

processes. Lemma A.3 gives the asymptotic properties of the GQMLE θ̃n,r , and its proof is similar to that of Theorem 3.1
in Francq and Zakoïan (2013a). Lemma A.4 proves the consistency of ϑ̃n,r for γ0 ≥ 0. Lemmas A.5–A.6 are used for the
proof of Theorem 3.1.

Lemma A.1. Suppose that Assumption 3.1(ii) holds.
(i) When γ0 > 0, for any θ ∈ Θ0, the process vt (ϑ) is stationary and ergodic. Moreover, for any compact set Θ∗

0 ⊂ Θ0,

sup
θ∈Θ∗

0

⏐⏐⏐⏐σ δt (θ )ht
− vt (ϑ)

⏐⏐⏐⏐ → 0 a.s. as t → ∞,

and

sup
θ∈Θ∗

0

⏐⏐⏐⏐ ht

σ δt (θ )
−

1
vt (ϑ)

⏐⏐⏐⏐ → 0 a.s. as t → ∞.

inally, for any θ ̸∈ Θ0, it holds that σ δt (θ )/ht → ∞ as t → ∞.
(ii) When γ0 = 0, for any θ ∈ Θp with p ≥ 1, the process vt (ϑ) is stationary and ergodic. Moreover, for any compact set

∗
p ⊂ Θp,

sup
θ∈Θ∗

p

⏐⏐⏐⏐σ δt (θ )ht
− vt (ϑ)

⏐⏐⏐⏐ → 0 in Lp as t → ∞,

and

sup
θ∈Θ∗

p

⏐⏐⏐⏐ ht

σ δt (θ )
−

1
vt (ϑ)

⏐⏐⏐⏐ → 0 in Lp as t → ∞.

Lemma A.2. Suppose that Assumption 3.1(ii) holds.
(i) When γ0 > 0, for any θ ∈ Θ0, the processes dα+

t (ϑ), dα−

t (ϑ), and dβt (ϑ) are stationary and ergodic. Moreover, for any
ompact set Θ∗

0 ⊂ Θ0,

sup
θ∈Θ∗

0

 1
ht

∂σ δt (θ )
∂ϑ

− dt (ϑ)
 → 0 a.s. as t → ∞,

where

dt (ϑ) = (dα+

t (ϑ), dα−

t (ϑ), dβt (ϑ))
′. (A.1)

(ii) When γ0 = 0, for any θ ∈ Θp with p ≥ 1, the processes dα+

t (ϑ), dα−

t (ϑ), and dβt (ϑ) are stationary and ergodic. Moreover,
for any compact set Θ∗

p ⊂ Θp,

sup
θ∈Θ∗

p

 1
ht

∂σ δt (θ )
∂ϑ

− dt (ϑ)
 → 0 in Lp as t → ∞.

Lemma A.3. Suppose that Assumption 3.1 holds and E|ηt |
2r < ∞.

(i) When γ0 < 0, and β < 1 for all θ ∈ Θ , then θ̃n,r → θ0 a.s. as n → ∞, and

√
n(θ̃n,r − θ0) = −

δJ−1

r
√
n

n∑
t=1

[1 − |ηt |
r
]
1
ht

∂ht (θ0)
∂θ

+ op(1)

→d N(0, κ2rδ2J−1) as n → ∞. (A.2)

(ii) When γ0 > 0, and P(ηt = 0) = 0, then ϑ̃n,r → ϑ0 a.s. as n → ∞, and

√
n(ϑ̃n,r − ϑ0) = −

δJ−1
ϑ

r
√
n

n∑
t=1

[1 − |ηt |
r
]
1
ht

∂σ δt (θ0)
∂ϑ

+ op(1)

→d N(0, κ2rδ2J−1
ϑ ) as n → ∞. (A.3)

(iii) When γ0 = 0, P(ηt = 0) = 0, and β < ∥1/a0(ηt )∥−1
p for any θ ∈ Θ and some p > 1, then ϑ̃n,r → ϑ0 in probability

s n → ∞, and (A.3) holds provided that Assumption 3.3 is satisfied.
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emma A.4. Suppose that Assumptions 3.1-3.2 hold and E|ηt |
2r < ∞.

(i) When γ0 > 0, and P(ηt = 0) = 0, then ϑ̂τn,r → ϑτ0 in probability as n → ∞.
(ii) When γ0 = 0, P(ηt = 0) = 0, and β < ∥1/a0(ηt )∥−1

p for any θ ∈ Θ and some p > 1, then ϑ̂τn,r → ϑτ0 in probability
s n → ∞.

roof. We only show the proof of (i), and the proof of (ii) is similar.
First, by (2.3), it is straightforward to see that (ω̂τn,r , ϑ̂ ′

τn,r )
′
= argminθτ∈Θτ Qn(θτ ), where Qn(θτ ) =

1
n

∑n
t=1[lt,ρ(θτ )−l†t,ρ]

ith l†t,ρ = ρτ
( yt
σ δt (θ̃n,r )

− bτ
)
. By using the identity

ρτ (x − y) − ρτ (x) = −yψτ (x) +

∫ y

0
[I(x ≤ s) − I(x ≤ 0)] ds

with ψτ (x) = τ − I(x < 0), it follows that

Qn(θτ ) = −
1
n

n∑
t=1

[
θ ′
τ z̃t

σ δt (θ̃n,r )
− bτ

]
ψτ

(
yt

σ δt (θ̃n,r )
− bτ

)

+
1
n

n∑
t=1

∫ θ ′τ z̃t
σδt (θ̃n,r )

−bτ

0
I
(

yt
σ δt (θ̃n,r )

≤ s + bτ

)
− I

(
yt

σ δt (θ̃n,r )
≤ bτ

)
ds

≡ −I11(θτ ) + I12(θτ ). (A.4)

Next, we consider I11(θτ ). By Proposition 2.1 in Francq and Zakoïan (2013a), ht → ∞ as t → ∞, and hence⏐⏐⏐⏐ht−1

ht
−

1
a0(ηt−1)

⏐⏐⏐⏐ =

⏐⏐⏐⏐ −ω0

a0(ηt−1)ht

⏐⏐⏐⏐ → 0 as t → ∞. (A.5)

y Lemma A.1(i), it follows that

sup
θ∈Θ∗

0

⏐⏐⏐⏐σ δt−1(θ )
ht

−
vt−1(ϑ)
a0(ηt−1)

⏐⏐⏐⏐ → 0 a.s. as t → ∞. (A.6)

efine Zt (θ ) = (1, (ϵ+

t−1)
δ, (−ϵ−

t−1)
δ, σ δt−1(θ ))

′ and ςt (ϑ) =
(
0,

(η+

t−1)
δ

a0(ηt−1)
,

(−η−

t−1)
δ

a0(ηt−1)
,
vt−1(ϑ)
a0(ηt−1)

)′. Since (ϵ+

t−1)
δ/ht−1 = (η+

t−1)
δ and

(−ϵ−

t−1)
δ/ht−1 = (−η−

t−1)
δ , by (A.5)–(A.6) we have

sup
θ∈Θ∗

0

Zt (θ )ht
− ςt (ϑ)

 → 0 a.s. as t → ∞. (A.7)

ote that z̃t = Zt (θ̃n,r ) and yt = T (ηt )ht . Then, it is not difficult to have

I11(θτ ) =
1
n

n∑
t=1

[
θ ′
τ z̃t/ht

σ δt (θ̃n,r )/ht
− bτ

]
ψτ

(
T (ηt )

σ δt (θ̃n,r )/ht
− bτ

)

=
1
n

n∑
t=1

[
θ ′
τςt (ϑ̃n,r )

vt (ϑ̃n,r )
− bτ

]
ψτ

(
T (ηt )

σ δt (θ̃n,r )/ht
− bτ

)
+ op(1)

=
1
n

n∑
t=1

[
θ ′
τςt (ϑ0)
vt (ϑ0)

− bτ

]
ψτ

(
T (ηt )

σ δt (θ̃n,r )/ht
− bτ

)
+ op(1), (A.8)

here the second equality holds by Lemma A.1(i), (A.7) and the boundedness of ψτ (·), and the last equality holds by
aylor’s expansion, Lemma A.3(ii), and the fact that

sup
θ∈Θ0

⏐⏐⏐⏐⏐1n
n∑

t=1

∂

∂ϑ

(
ςt (ϑ)
vt (ϑ)

)⏐⏐⏐⏐⏐ = Op(1).

urthermore, by the double expectation, Lemma A.1(i), Assumption 3.2, and standard arguments for tightness, we can
rove

sup
θ∈Θ

⏐⏐⏐⏐⏐1n
n∑

t=1

[
θ ′
τςt (ϑ0)
vt (ϑ0)

− bτ

][
ψτ

(
T (ηt )

σ δt (θ )/ht
− bτ

)
− ψτ

(
T (ηt )
vt (ϑ)

− bτ

)]⏐⏐⏐⏐⏐ = op(1). (A.9)

ence, by (A.8) and (A.9), it follows that

I11(θτ ) =
1
n

n∑[
θ ′
τςt (ϑ0)
v (ϑ )

− bτ

]
ψτ

(
T (ηt )

˜
− bτ

)
+ op(1)
t=1 t 0 vt (ϑn,r )
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(

P

t

= E
{[
θ ′
τςt (ϑ0)
vt (ϑ0)

− bτ

]
ψτ

(
T (ηt )

vt (ϑ̃n,r )
− bτ

)}
+ op(1)

= E
{[
θ ′
τςt (ϑ0)
vt (ϑ0)

− bτ

]
ψτ

(
T (ηt )
vt (ϑ0)

− bτ

)}
+ op(1)

= E
{[
ϑ ′

τ ξt − bτ
]
ψτ (T (ηt ) − bτ )

}
+ op(1)

= op(1), (A.10)

where the second equality holds by the uniform ergodic theorem, the third equality holds by the dominated convergence
theorem and Lemma A.3(ii), the fourth equality holds since vt (ϑ0) = 1 and ςt (ϑ0) = (0, ξt ), and the last equality holds
y the double expectation and the fact that the τ th quantile of T (ηt ) is bτ .
Third, we consider I12(θτ ). As for (A.10), we can show

I12(θτ ) = E

{∫ ϑ ′
τ ξt−bτ

0
I (T (ηt ) ≤ s + bτ )− I (T (ηt ) ≤ bτ ) ds

}
+ op(1)

= E

{∫ ϑ ′
τ ξt−ϑ

′
τ0ξt

0
[f (ϑ̆τ )]s ds

}
+ op(1)

≡ H(ϑτ ) + op(1), (A.11)

here ϑ̆τ lies between s + bτ and bτ , and the second equality holds by the double expectation, Taylor’s expansion, and
he fact that bτ = ϑ ′

τ0ξt .
Note that |ϑ̆τ | ≤ |bτ | + |(ϑτ − ϑτ0)′ξt | ≤ C0 for some constant C0 > 0. By (A.4), (A.10) and (A.11), we have that

n(θτ ) = H(ϑτ ) + op(1), where

H(ϑτ ) ≥ (ϑτ − ϑτ0)′E
{

[inf|x|≤C0 f (x)]
2

ξtξ
′

t

}
(ϑτ − ϑτ0),

and the equality holds if and only if ϑτ = ϑτ0. Hence, the proof of (i) is completed by standard arguments, invoking the
ompactness of Θτ . □

Write z̃t = (1, z̃ ′

t,ϑ )
′, where z̃t,ϑ = ((ϵ+

t−1)
δ, (−ϵ−

t−1)
δ, σ δt−1(θ̃n,r ))

′. Define z̄t = (1, z̄ ′

t,ϑ )
′, where z̄t,ϑ =

((ϵ+

t−1)
δ, (−ϵ−

t−1)
δ, σ δt−1(θ0))

′.

Lemma A.5. Suppose that Assumptions 3.1–3.2 hold and E|ηt |
2r < ∞.

(i) If γ0 > 0, and P(ηt = 0) = 0, then

I2 = op(1), I3 = −f (bτ )bτΓϑ [
√
n(ϑ̃n,r − ϑ0)] + op(1), (A.12)

and I4 = [−f (bτ )Ωϑ + op(1)][
√
n(ϑ̂τn,r − ϑτ0)] + op(1), (A.13)

here

I2 =
1

√
n

n∑
t=1

ψτ

(
yt − θ̂ ′

τn,r z̃t
)[ z̃t,ϑ
σ δt (θ̃n,r )

−
z̄t,ϑ
σ δt (θ0)

]
,

I3 =
1

√
n

n∑
t=1

[
ψτ

(
yt − θ̂ ′

τn,r z̃t
)

− ψτ

(
yt − θ̂ ′

τn,r z̄t
)] z̄t,ϑ
σ δt (θ0)

,

I4 =
1

√
n

n∑
t=1

[
ψτ

(
yt − θ̂ ′

τn,r z̄t
)

− ψτ
(
yt − θ ′

τ0z̄t
)] z̄t,ϑ
σ δt (θ0)

.

(ii) If γ0 = 0, P(ηt = 0) = 0, β < ∥1/a0(ηt )∥−1
p for any θ ∈ Θ and some p > 1, and Assumption 3.3 is satisfied, then

A.12)–(A.13) hold.

roof. We only show the proof of (i), and the proof of (ii) is similar.
First, we consider I2. Without loss of generality, we only show that I21 = op(1), where I21 is the first entry of I2. Note

hat

I21 =
1

√
n

n∑
t=1

ψτ

(
yt − θ̂ ′

τn,r z̃t
)
(η+

t−1)
δht−1

[
1

σ δt (θ̃n,r )
−

1
σ δt (θ0)

]

=
1

√
n

n∑
ψτ

(
yt − θ̂ ′

τn,r z̃t
) (η+

t−1)
δht−1

2δ ˇ

∂σ δt (θ̌n,r )
∂ϑ ′

(ϑ̃n,r − ϑ0)

t=1 σt (θn,r )
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N
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w

a

+
1

√
n

n∑
t=1

ψτ

(
yt − θ̂ ′

τn,r z̃t
) (η+

t−1)
δht−1

σ 2δ
t (θ̌n,r )

∂σ δt (θ̌n,r )
∂ω

(ω̃n,r − ω0)

≡ I21,1 + I21,2. (A.14)

By the similar arguments for Lemma 7.5 in Francq and Zakoïan (2013a), we can show that I21,2 = op(1). For I21,1, since√
n(ϑ̃n,r − ϑ0) = Op(1) by Lemma A.3(ii), we have

I21,1 =
1
n

n∑
t=1

ψτ

(
yt − θ̂ ′

τn,r z̃t
) (η+

t−1)
δ
[ht−1/ht ]

[σ δt (θ̌n,r )/ht ]
2

1
ht

∂σ δt (θ̌n,r )
∂ϑ ′

[
√
n(ϑ̃n,r − ϑ0)]

=
1
n

n∑
t=1

ψτ

(
yt − θ̂ ′

τn,r z̃t
) (η+

t−1)
δ

a0(ηt−1)
dt (ϑ0)

[vt (ϑ0)]2
[
√
n(ϑ̃n,r − ϑ0)] + op(1)

≡ I†21,1[
√
n(ϑ̃n,r − ϑ0)] + op(1), (A.15)

where the second equality holds by Lemmas A.1(i) and A.2(i) and the similar arguments as for (A.8) and (A.10).
Write ψτ

(
yt − θ̂ ′

τn,r z̃t
)

= ψτ
(
T (ηt ) − bτ + cτ ,nt

)
, where cτ ,nt = bτ − θ̂ ′

τn,r z̃t/ht . Since the τ th quantile of T (ηt ) is bτ ,
by the ergodic theorem we have

I†21,1 =
1
n

n∑
t=1

[
ψτ
(
T (ηt ) − bτ + cτ ,nt

)
− ψτ (T (ηt ) − bτ )

] (η+

t−1)
δ

a0(ηt−1)
dt (ϑ0)

[vt (ϑ0)]2
+ op(1)

=
1
n

n∑
t=1

χt (cτ ,nt ) + op(1),

here

χt (x) = [ψτ (T (ηt ) − bτ + x)− ψτ (T (ηt ) − bτ )]
(η+

t−1)
δ

a0(ηt−1)
dt (ϑ0)

[vt (ϑ0)]2
.

By Lemmas A.1(i), A.2(i), A.3(ii) and A.4(i), we know that cτ ,nt = op(1) for sufficient large t . Hence, for any ε, η > 0, there
exists a t0(ε) > 0 such that

P
(
|cτ ,nt | > η

)
<
ε

2
(A.16)

for t ≥ t0, and

I†21,1 =
1
n

n∑
t=t0

χt (cτ ,nt ) + op(1). (A.17)

ote that sup|x|≤η

⏐⏐⏐ 1n ∑n
t=t0

χt (x)
⏐⏐⏐ ≤ sup|x|≤η |χt (x)| and limη→0 E(sup|x|≤η |χt (x)|) = 0 by the double expectation and

ominated convergence theorem. Thus, by Markov’s inequality, for any ε, ε′ > 0, there exists an η0(ε) > 0 such that
(sup|x|≤η0

⏐⏐⏐ 1n ∑n
t=t0

χt (x)
⏐⏐⏐ > ε′) < ε/2. By (A.16), it follows that

P

(⏐⏐⏐⏐⏐1n
n∑

t=t0

χt (cτ ,nt )

⏐⏐⏐⏐⏐ > ε′

)
≤ P

(⏐⏐⏐⏐⏐1n
n∑

t=t0

χt (cτ ,nt )

⏐⏐⏐⏐⏐ > ε′, |cτ ,nt | ≤ η0

)
+ P

(
|cτ ,nt | > η0

)
≤ P

(
sup

|x|≤η0

⏐⏐⏐⏐⏐1n
n∑

t=t0

χt (x)

⏐⏐⏐⏐⏐ > ε′

)
+
ε

2

≤
ε

2
+
ε

2
= ε,

hich implies that I†21,1 = op(1) by (A.17), I21,1 = op(1) by (A.15), and I21 = op(1) by (A.14).
Second, by Lemmas A.1(i), A.2(i), A.3(ii) and A.4(i), Proposition 2.1 in Francq and Zakoïan (2013a), and the similar

rguments as for Theorem 2.1 in Zheng et al. (2018), we can prove the result for I3.
Third, we consider I4. Let

υt (ω, u) =

[
ψτ

(
yt − u′z̄t,ϑ

ht
−
ω + ϑ ′

τ0z̄t,ϑ
ht

)
− ψτ

(
yt − ϑ ′

τ0z̄t,ϑ
ht

−
ωτ0

ht

)]
z̄t,ϑ
σ δt (θ0)

=

[
I
(
T (ηt ) <

ϑ ′

τ0z̄t,ϑ + ωτ0
)

− I
(
T (ηt ) <

u′z̄t,ϑ
+
ω + ϑ ′

τ0z̄t,ϑ
)]

z̄t,ϑ
δ

.

ht ht ht σt (θ0)
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Then, we can see that I4 =
1

√
n

∑n
t=1 υt (ω̂τn,r , ûτn,r ), where ûτn,r = ϑ̂τn,r − ϑτ0. Since I(·) is an increasing function and

ωτ ≤ ω̂τn ≤ ωτ for some constants ωτ and ωτ , we only need to show

1
√
n

n∑
t=1

υt (ω, ûτn,r ) = [−f (bτ )Ωϑ + op(1)](
√
nûτn,r ) + op(1) (A.18)

for any fixed ω. Rewrite

1
√
n

n∑
t=1

υt (ω, u) = Wn(ω, u) + Sn(ω, u), (A.19)

where

Wn(ω, u) =
1

√
n

n∑
t=1

E[υt (ω, u)|Ft−1] and Sn(ω, u) =
1

√
n

n∑
t=1

{υt (ω, u) − E[υt (ω, u)|Ft−1]} .

y Assumptions 3.1-3.2, Lemmas A.1(i) and A.4(i), and Proposition 2.1 in Francq and Zakoïan (2013a) it is not difficult
o show that Wn(ω, u) = −f (bτ )Ωϑ (

√
nu) + op(1). Meanwhile, by similar arguments as for Lemma 2.2 in Zhu and Ling

2011), we can show that for fixed ω and any η > 0, we have

sup
∥u∥≤η

∥Sn(ω, u)∥
1 +

√
n∥u∥

= op(1),

which implies that Sn(ω, ûτn,r ) = op(
√
nûτn,r ) + op(1) by Lemma A.4(i). Hence, by (A.19) it follows that

1
√
n

n∑
t=1

υt (ω, ûτn,r ) = −f (bτ )Ωϑ (
√
nûτn,r ) + op(

√
nûτn,r ) + op(1),

.e., (A.18) holds. This completes all of the proofs. □

emma A.6. Suppose that Assumptions 3.1–3.2 hold and E|ηt |
2r < ∞.

(i) If γ0 > 0, and P(ηt = 0) = 0, then

I5 =
1

√
n

n∑
t=1

ψτ
(
ηt − Qτ ,η

) z̄t,ϑ
σ δt (θ0)

+ op(1)

→d N(0, (τ − τ 2)E(ξtξ ′

t )) as n → ∞, (A.20)

where

I5 =
1

√
n

n∑
t=1

ψτ
(
yt − θ ′

τ0z̄t
) z̄t,ϑ
σ δt (θ0)

.

(ii) If γ0 = 0, P(ηt = 0) = 0, β < ∥1/a0(ηt )∥−1
p for any θ ∈ Θ and some p > 1, and Assumption 3.3 is satisfied, then

(A.20) holds.

Proof. The proof can be accomplished by following the similar arguments as for Lemma 7.4 in Francq and Zakoïan
(2013a). □

roof of Theorem 3.1. (i) Following the proofs in Zheng et al. (2018) and Hamadeh and Zakoïan (2011), we can show

√
n(θ̂τn,r − θτ0) =

Ω−1

f (bτ )

[
1

√
n

n∑
t=1

ψτ
(
ηt − Qτ ,η

) zt
ht (θ0)

]
− bτΩ−1Γ [

√
n(θ̃n,r − θ0)] + op(1), (A.21)

hich entails (i) by Lemma A.3(i) and standard arguments.
(ii) Following the same arguments as for Theorem 2.1 in Francq and Zakoïan (2012), the subgradient derivative with

espect to ϑτ is asymptotically equal to zero at the minimum, since ϑ̂τn,r →p ϑτ0 by Lemma A.4(i), and ϑτ0 belongs to
he interior of Θτ . This implies

0 =
1

√
n

n∑
t=1

ψτ

(
yt − θ̂ ′

τn,r z̃t
) z̃t,ϑ
σ δt (θ̃n,r )

. (A.22)

oreover, by Lemmas A.5(i) and A.6(i), we have

1
√
n

n∑
ψτ

(
yt − θ̂ ′

τn,r z̃t
) z̃t,ϑ

δ ˜

t=1 σt (θn,r )
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w

= I2 + I3 + I4 + I5
= −f (bτ )bτΓϑ [

√
n(ϑ̃n,r − ϑ0)] + [−f (bτ )Ωϑ + op(1)][

√
n(ϑ̂τn,r − ϑτ0)]

+
1

√
n

n∑
t=1

ψτ
(
ηt − Qτ ,η

) z̄t,ϑ
σ δt (θ0)

+ op(1).

By (A.22), it follows that

√
n(ϑ̂τn,r − ϑτ0) =

Ω−1
ϑ

f (bτ )

[
1

√
n

n∑
t=1

ψτ
(
ηt − Qτ ,η

) z̄t,ϑ
σ δt (θ0)

]
− bτΩ−1

ϑ Γϑ [
√
n(ϑ̃n,r − ϑ0)] + op(1), (A.23)

hich implies (ii) holds by Lemmas A.3(ii) and A.6(i), and standard arguments.
(iii) Its proof can be accomplished by following the similar arguments as for (ii). This completes all of the proofs. □
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